論文の概要: GeoGraph: Learning graph-based multi-view object detection with
geometric cues end-to-end
- arxiv url: http://arxiv.org/abs/2003.10151v2
- Date: Tue, 24 Mar 2020 14:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 00:16:06.832485
- Title: GeoGraph: Learning graph-based multi-view object detection with
geometric cues end-to-end
- Title(参考訳): GeoGraph: 幾何学的手がかりを用いたグラフに基づく多視点物体検出学習
- Authors: Ahmed Samy Nassar, Stefano D'Aronco, S\'ebastien Lef\`evre, and Jan D.
Wegner
- Abstract要約: 複数のビューから静的な都市オブジェクトを検出するエンド・ツー・エンドの学習可能なアプローチを提案する。
提案手法はグラフニューラルネットワーク(GNN)を用いて全ての物体を検出し,その位置を出力する。
我々のGNNは、相対的なポーズと画像の証拠を同時にモデル化し、任意の数の入力ビューを扱うことができる。
- 参考スコア(独自算出の注目度): 10.349116753411742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose an end-to-end learnable approach that detects static
urban objects from multiple views, re-identifies instances, and finally assigns
a geographic position per object. Our method relies on a Graph Neural Network
(GNN) to, detect all objects and output their geographic positions given images
and approximate camera poses as input. Our GNN simultaneously models relative
pose and image evidence, and is further able to deal with an arbitrary number
of input views. Our method is robust to occlusion, with similar appearance of
neighboring objects, and severe changes in viewpoints by jointly reasoning
about visual image appearance and relative pose. Experimental evaluation on two
challenging, large-scale datasets and comparison with state-of-the-art methods
show significant and systematic improvements both in accuracy and efficiency,
with 2-6% gain in detection and re-ID average precision as well as 8x reduction
of training time.
- Abstract(参考訳): 本稿では,複数のビューから静的な都市オブジェクトを検出し,インスタンスを再識別し,最後にオブジェクトごとに地理的位置を割り当てる,エンドツーエンド学習可能な手法を提案する。
提案手法はグラフニューラルネットワーク(GNN)を用いて全ての物体を検出し,その位置を画像と近似カメラのポーズを入力として出力する。
我々のGNNは、相対的なポーズと画像証拠を同時にモデル化し、任意の数の入力ビューを扱うことができる。
本手法は咬合に頑健であり, 近接物体の外観が類似しており, 視覚的画像の出現と相対的なポーズを共同で推論することにより, 視点の変化が顕著である。
2つの挑戦的大規模データセットの実験的評価と最先端手法との比較により、精度と効率の両面で有意かつ体系的な改善が見られ、検出と再ID平均精度が2-6%向上し、トレーニング時間を8倍短縮した。
関連論文リスト
- UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOTは、オブジェクトの外観と運動の特徴と幾何学的情報を組み合わせて、より正確なトラッキングを提供する新しいフレームワークである。
実験結果から, HOTA, IDF1, MOTAの計測値において, 最先端手法と比較して顕著な性能を示した。
論文 参考訳(メタデータ) (2023-09-03T04:58:12Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Masked Contrastive Graph Representation Learning for Age Estimation [44.96502862249276]
本稿では,画像冗長性情報を扱う上で,グラフ表現学習の特性を利用する。
年齢推定のためのMasked Contrastive Graph Representation Learning (MCGRL)法を提案する。
実世界の顔画像データセットに対する実験結果から,提案手法が他の最先端の年齢推定手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-06-16T15:53:21Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
学習可能なマーカは、画像ペア間のコビジュアビリティの小さな領域だけが存在する場合、しばしば性能が低下する。
グラフニューラルネットワークに基づくモデルを用いた学習可能な特徴マッチングフレームワーク LFM-3D を提案する。
その結果,画像対の相対的ポーズ精度が向上し,画像対の相対的ポーズ精度が向上することがわかった。
論文 参考訳(メタデータ) (2023-03-22T17:46:27Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
本稿では,ノードとエッジがオブジェクトによって表現される構造化グラフを用いた,新しい不確実性を考慮したオブジェクト検出フレームワークを提案する。
我々は我々のモデルをオブジェクトDETection(UAGDet)のための不確実性対応グラフネットワークと呼ぶ。
論文 参考訳(メタデータ) (2022-08-23T07:29:03Z) - PoserNet: Refining Relative Camera Poses Exploiting Object Detections [14.611595909419297]
我々は、明示的な意味的オブジェクト検出よりも、ポーズ推定問題を導くために、オブジェクトネス領域を使用する。
本稿では,ペアワイド相対カメラのポーズを近似的に改善する軽量グラフネットワーク Pose Refiner Network (PoserNet) を提案する。
グラフのサイズによって異なる7-Scenesデータセットを評価し、このプロセスが最適化に基づくMotion Averagingアルゴリズムにどのように役立つかを示す。
論文 参考訳(メタデータ) (2022-07-19T17:58:33Z) - End-to-end learning of keypoint detection and matching for relative pose
estimation [1.8352113484137624]
2つの画像間の相対的なポーズを推定する新しい手法を提案する。
キーポイント検出,説明抽出,マッチング,ロバストなポーズ推定を共同で学習する。
本研究では,既知のポーズを持つ画像データベース内でのクエリ画像の視覚的局在化の手法を示す。
論文 参考訳(メタデータ) (2021-04-02T15:16:17Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
非均質な画像コレクションから変形可能な3Dジオメトリモデルを学ぶためのトレーニング可能なフレームワークを提案する。
さらに,2次元画像で表現された物体の3次元形状も取得する。
論文 参考訳(メタデータ) (2021-03-31T17:25:36Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。