Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models
- URL: http://arxiv.org/abs/2003.10381v1
- Date: Tue, 10 Mar 2020 09:15:42 GMT
- Title: Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models
- Authors: Alessandro Berlati, Oliver Scheel, Luigi Di Stefano, Federico Tombari
- Abstract summary: We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
- Score: 110.82452096672182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ambiguity is inherently present in many machine learning tasks, but
especially for sequential models seldom accounted for, as most only output a
single prediction. In this work we propose an extension of the Multiple
Hypothesis Prediction (MHP) model to handle ambiguous predictions with
sequential data, which is of special importance, as often multiple futures are
equally likely. Our approach can be applied to the most common recurrent
architectures and can be used with any loss function. Additionally, we
introduce a novel metric for ambiguous problems, which is better suited to
account for uncertainties and coincides with our intuitive understanding of
correctness in the presence of multiple labels. We test our method on several
experiments and across diverse tasks dealing with time series data, such as
trajectory forecasting and maneuver prediction, achieving promising results.
Related papers
- Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Predictive Querying for Autoregressive Neural Sequence Models [23.85426261235507]
We introduce a general typology for predictive queries in neural autoregressive sequence models.
We show that such queries can be systematically represented by sets of elementary building blocks.
We leverage this typology to develop new query estimation methods.
arXiv Detail & Related papers (2022-10-12T17:59:36Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
We focus on the widely used self-supervised learning method of predicting masked tokens.
We show that there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while others do not.
arXiv Detail & Related papers (2022-02-18T17:09:32Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Backward-Compatible Prediction Updates: A Probabilistic Approach [12.049279991559091]
We formalize the Prediction Update Problem and present an efficient probabilistic approach as answer to the above questions.
In extensive experiments on standard classification benchmark data sets, we show that our method outperforms alternative strategies for backward-compatible prediction updates.
arXiv Detail & Related papers (2021-07-02T13:05:31Z) - Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting [4.131842516813833]
We introduce a novel temporal latent auto-encoder method which enables nonlinear factorization of time series.
By imposing a probabilistic latent space model, complex distributions of the input series are modeled via the decoder.
Our model achieves state-of-the-art performance on many popular multivariate datasets, with gains sometimes as high as $50%$ for several standard metrics.
arXiv Detail & Related papers (2021-01-25T22:29:40Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.