A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting
- URL: http://arxiv.org/abs/2207.14219v9
- Date: Wed, 11 Oct 2023 08:26:52 GMT
- Title: A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting
- Authors: Martim Sousa, Ana Maria Tom\'e, Jos\'e Moreira
- Abstract summary: This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel model-agnostic algorithm called adaptive
ensemble batch multi-input multi-output conformalized quantile regression
(AEnbMIMOCQR} that enables forecasters to generate multi-step ahead prediction
intervals for a fixed pre-specified miscoverage rate in a distribution-free
manner. Our method is grounded on conformal prediction principles, however, it
does not require data splitting and provides close to exact coverage even when
the data is not exchangeable. Moreover, the resulting prediction intervals,
besides being empirically valid along the forecast horizon, do not neglect
heteroscedasticity. AEnbMIMOCQR is designed to be robust to distribution
shifts, which means that its prediction intervals remain reliable over an
unlimited period of time, without entailing retraining or imposing unrealistic
strict assumptions on the data-generating process. Through methodically
experimentation, we demonstrate that our approach outperforms other competitive
methods on both real-world and synthetic datasets. The code used in the
experimental part and a tutorial on how to use AEnbMIMOCQR can be found at the
following GitHub repository: https://github.com/Quilograma/AEnbMIMOCQR.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Conformalized Late Fusion Multi-View Learning [18.928543069018865]
Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems.
A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available.
We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently.
arXiv Detail & Related papers (2024-05-25T14:11:01Z) - Posterior Uncertainty Quantification in Neural Networks using Data Augmentation [3.9860047080844807]
We show that deep ensembling is a fundamentally mis-specified model class, since it assumes that future data are supported on existing observations only.
We propose MixupMP, a method that constructs a more realistic predictive distribution using popular data augmentation techniques.
Our empirical analysis showcases that MixupMP achieves superior predictive performance and uncertainty quantification on various image classification datasets.
arXiv Detail & Related papers (2024-03-18T17:46:07Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - End-to-End Modeling Hierarchical Time Series Using Autoregressive
Transformer and Conditional Normalizing Flow based Reconciliation [13.447952588934337]
We propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation.
Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step.
arXiv Detail & Related papers (2022-12-28T05:43:57Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
arXiv Detail & Related papers (2022-02-17T16:54:20Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.