The Internet of Things as a Deep Neural Network
- URL: http://arxiv.org/abs/2003.10538v1
- Date: Mon, 23 Mar 2020 20:36:16 GMT
- Title: The Internet of Things as a Deep Neural Network
- Authors: Rong Du, Sindri Magn\'usson, Carlo Fischione
- Abstract summary: This article proposes to model the measurement compression at IoT nodes and the inference at the base station or cloud as a deep neural network (DNN)
We show how to learn the model parameters of the DNN and study the trade-off between the communication rate and the inference accuracy.
Our findings have the potentiality to enable many new IoT data analysis applications generating large amount of measurements.
- Score: 16.78220721167574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important task in the Internet of Things (IoT) is field monitoring, where
multiple IoT nodes take measurements and communicate them to the base station
or the cloud for processing, inference, and analysis. This communication
becomes costly when the measurements are high-dimensional (e.g., videos or
time-series data). The IoT networks with limited bandwidth and low power
devices may not be able to support such frequent transmissions with high data
rates. To ensure communication efficiency, this article proposes to model the
measurement compression at IoT nodes and the inference at the base station or
cloud as a deep neural network (DNN). We propose a new framework where the data
to be transmitted from nodes are the intermediate outputs of a layer of the
DNN. We show how to learn the model parameters of the DNN and study the
trade-off between the communication rate and the inference accuracy. The
experimental results show that we can save approximately 96% transmissions with
only a degradation of 2.5% in inference accuracy. Our findings have the
potentiality to enable many new IoT data analysis applications generating large
amount of measurements.
Related papers
- ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks [20.953587995374168]
We propose a Deep Learning-based approach that combines Convolutional Neural Networks (CNNs) and customized Vision Transformers (ViTs)
Our method capitalizes on the synergistic strengths of CNNs and ViTs to extract features from time-series multimodal data.
Our results show that the proposed approach achieves high accuracy and outperforms state-of-the-art solutions, achieving more than $95%$ accurate predictions.
arXiv Detail & Related papers (2024-06-27T01:38:09Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
We propose a novel offloading architecture called joint data deepening-and-prefetching (JD2P)
JD2P is feature-by-feature offloading comprising two key techniques.
We evaluate the effectiveness of JD2P through experiments using the MNIST dataset.
arXiv Detail & Related papers (2024-02-19T08:12:47Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
We propose a novel method of exploiting model parallelism to separate a neural network for distributed inferences.
Under proper specifications of devices and configurations of models, our experiments show that the inference of large neural networks on edge clusters can be distributed and accelerated.
arXiv Detail & Related papers (2021-11-03T19:30:28Z) - Energy efficient distributed analytics at the edge of the network for
IoT environments [0.4898659895355355]
We exploit the fog computing paradigm to move close to where data is produced.
We analyse the performance of different configurations of the distributed learning framework.
arXiv Detail & Related papers (2021-09-23T14:07:33Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
Internet of Things (IoT) devices are constructed to build a huge communications network.
These devices are insecure in reality, it means that the communications network are exposed by the attacker.
In this paper, we propose SS-VTCN, a semi-supervised network for IoT multiple anomaly detection.
arXiv Detail & Related papers (2021-04-05T08:51:24Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.