ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks
- URL: http://arxiv.org/abs/2407.15023v1
- Date: Thu, 27 Jun 2024 01:38:09 GMT
- Title: ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks
- Authors: Ghazi Gharsallah, Georges Kaddoum,
- Abstract summary: We propose a Deep Learning-based approach that combines Convolutional Neural Networks (CNNs) and customized Vision Transformers (ViTs)
Our method capitalizes on the synergistic strengths of CNNs and ViTs to extract features from time-series multimodal data.
Our results show that the proposed approach achieves high accuracy and outperforms state-of-the-art solutions, achieving more than $95%$ accurate predictions.
- Score: 20.953587995374168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As wireless communication technology progresses towards the sixth generation (6G), high-frequency millimeter-wave (mmWave) communication has emerged as a promising candidate for enabling vehicular networks. It offers high data rates and low-latency communication. However, obstacles such as buildings, trees, and other vehicles can cause signal attenuation and blockage, leading to communication failures that can result in fatal accidents or traffic congestion. Predicting blockages is crucial for ensuring reliable and efficient communications. Furthermore, the advent of 6G technology is anticipated to integrate advanced sensing capabilities, utilizing a variety of sensor types. These sensors, ranging from traditional RF sensors to cameras and Lidar sensors, are expected to provide access to rich multimodal data, thereby enriching communication systems with a wealth of additional contextual information. Leveraging this multimodal data becomes essential for making precise network management decisions, including the crucial task of blockage detection. In this paper, we propose a Deep Learning (DL)-based approach that combines Convolutional Neural Networks (CNNs) and customized Vision Transformers (ViTs) to effectively extract essential information from multimodal data and predict blockages in vehicular networks. Our method capitalizes on the synergistic strengths of CNNs and ViTs to extract features from time-series multimodal data, which include images and beam vectors. To capture temporal dependencies between the extracted features and the blockage state at future time steps, we employ a Gated Recurrent Unit (GRU)-based architecture. Our results show that the proposed approach achieves high accuracy and outperforms state-of-the-art solutions, achieving more than $95\%$ accurate predictions.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Intelligent Communication Planning for Constrained Environmental IoT
Sensing with Reinforcement Learning [19.715387333728152]
Internet of Things (IoT) devices are often power-constrained and utilize wireless communication schemes with limited bandwidth.
We formulate the communication planning problem of IoT sensors that track the state of the environment.
We propose a multi-agent reinforcement learning (MARL) method to find the optimal communication policies for each sensor.
arXiv Detail & Related papers (2023-08-19T22:59:09Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
We develop an intelligent, efficient, and updatable intrusion detection system by applying an important machine learning concept known as ensemble learning.
In this paper, we examine the application of different homogeneous and heterogeneous online ensembles in sensory data analysis.
Among the proposed novel online ensembles, both the heterogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble HAT made up of 10 models achieved higher detection rates of 96.84% and 97.2%, respectively.
arXiv Detail & Related papers (2022-04-28T23:10:47Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Heterogeneous Noisy Short Signal Camouflage in Multi-Domain Environment
Decision-Making [0.0]
We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal.
In one of the latest attempts to the military modernization, we investigate the challenges of enabling an intelligent identification and detection operation.
arXiv Detail & Related papers (2021-06-02T22:59:58Z) - Vision-Aided Dynamic Blockage Prediction for 6G Wireless Communication
Networks [11.626009272815816]
This paper proposes a novel solution that proactively predicts textitdynamic link blockages.
It learns from observed sequences of RGB images and beamforming vectors how to predict possible future link blockages.
It scores a link-blockage prediction accuracy in the neighborhood of 86%, a performance that is unlikely to be matched without utilizing visual data.
arXiv Detail & Related papers (2020-06-17T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.