Input-to-State Representation in linear reservoirs dynamics
- URL: http://arxiv.org/abs/2003.10585v3
- Date: Fri, 12 Feb 2021 14:29:49 GMT
- Title: Input-to-State Representation in linear reservoirs dynamics
- Authors: Pietro Verzelli and Cesare Alippi and Lorenzo Livi and Peter Tino
- Abstract summary: Reservoir computing is a popular approach to design recurrent neural networks.
The working principle of these networks is not fully understood.
A novel analysis of the dynamics of such networks is proposed.
- Score: 15.491286626948881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir computing is a popular approach to design recurrent neural
networks, due to its training simplicity and approximation performance. The
recurrent part of these networks is not trained (e.g., via gradient descent),
making them appealing for analytical studies by a large community of
researchers with backgrounds spanning from dynamical systems to neuroscience.
However, even in the simple linear case, the working principle of these
networks is not fully understood and their design is usually driven by
heuristics. A novel analysis of the dynamics of such networks is proposed,
which allows the investigator to express the state evolution using the
controllability matrix. Such a matrix encodes salient characteristics of the
network dynamics; in particular, its rank represents an input-indepedent
measure of the memory capacity of the network. Using the proposed approach, it
is possible to compare different reservoir architectures and explain why a
cyclic topology achieves favourable results as verified by practitioners.
Related papers
- From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Vanilla Feedforward Neural Networks as a Discretization of Dynamical Systems [9.382423715831687]
In this paper, we back to the classical network structure and prove that the vanilla feedforward networks could also be a numerical discretization of dynamic systems.
Our results could provide a new perspective for understanding the approximation properties of feedforward neural networks.
arXiv Detail & Related papers (2022-09-22T10:32:08Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
We introduce a novel theoretical framework based on the compositional structure of piecewise linear activation functions.
It is possible to characterize the instances of the input data with respect to both the predicted label and the specific (linear) transformation used to perform predictions.
Preliminary tests on the MNIST dataset show that our method can group input instances with regard to their similarity in the internal representation of the neural network.
arXiv Detail & Related papers (2020-02-17T14:16:17Z) - Emergence of Network Motifs in Deep Neural Networks [0.35911228556176483]
We show that network science tools can be successfully applied to the study of artificial neural networks.
In particular, we study the emergence of network motifs in multi-layer perceptrons.
arXiv Detail & Related papers (2019-12-27T17:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.