Learning Connectivity of Neural Networks from a Topological Perspective
- URL: http://arxiv.org/abs/2008.08261v1
- Date: Wed, 19 Aug 2020 04:53:31 GMT
- Title: Learning Connectivity of Neural Networks from a Topological Perspective
- Authors: Kun Yuan, Quanquan Li, Jing Shao, Junjie Yan
- Abstract summary: We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
- Score: 80.35103711638548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seeking effective neural networks is a critical and practical field in deep
learning. Besides designing the depth, type of convolution, normalization, and
nonlinearities, the topological connectivity of neural networks is also
important. Previous principles of rule-based modular design simplify the
difficulty of building an effective architecture, but constrain the possible
topologies in limited spaces. In this paper, we attempt to optimize the
connectivity in neural networks. We propose a topological perspective to
represent a network into a complete graph for analysis, where nodes carry out
aggregation and transformation of features, and edges determine the flow of
information. By assigning learnable parameters to the edges which reflect the
magnitude of connections, the learning process can be performed in a
differentiable manner. We further attach auxiliary sparsity constraint to the
distribution of connectedness, which promotes the learned topology focus on
critical connections. This learning process is compatible with existing
networks and owns adaptability to larger search spaces and different tasks.
Quantitative results of experiments reflect the learned connectivity is
superior to traditional rule-based ones, such as random, residual, and
complete. In addition, it obtains significant improvements in image
classification and object detection without introducing excessive computation
burden.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - The Principles of Deep Learning Theory [19.33681537640272]
This book develops an effective theory approach to understanding deep neural networks of practical relevance.
We explain how these effectively-deep networks learn nontrivial representations from training.
We show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks.
arXiv Detail & Related papers (2021-06-18T15:00:00Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Topological Insights into Sparse Neural Networks [16.515620374178535]
We introduce an approach to understand and compare sparse neural network topologies from the perspective of graph theory.
We first propose Neural Network Sparse Topology Distance (NNSTD) to measure the distance between different sparse neural networks.
We show that adaptive sparse connectivity can always unveil a plenitude of sparse sub-networks with very different topologies which outperform the dense model.
arXiv Detail & Related papers (2020-06-24T22:27:21Z) - Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural
Networks [3.7277730514654555]
We use decision trees to capture relevant features and their interactions and define a mapping to encode extracted relationships into a neural network.
At the same time through feature selection it enables learning of compact representations compared to state of the art tree-based approaches.
arXiv Detail & Related papers (2020-02-11T11:22:20Z) - Emergence of Network Motifs in Deep Neural Networks [0.35911228556176483]
We show that network science tools can be successfully applied to the study of artificial neural networks.
In particular, we study the emergence of network motifs in multi-layer perceptrons.
arXiv Detail & Related papers (2019-12-27T17:05:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.