Occurrence control of charged exciton for a single CdSe quantum dot at
cryogenic temperatures on an optical nanofiber
- URL: http://arxiv.org/abs/2003.10619v1
- Date: Tue, 24 Mar 2020 02:13:29 GMT
- Title: Occurrence control of charged exciton for a single CdSe quantum dot at
cryogenic temperatures on an optical nanofiber
- Authors: K. Muhammed Shafi, Kazunori Iida, Emi Tsutsumi, Akiharu Miyanaga and
Kohzo Hakuta
- Abstract summary: We discuss photo-luminescence characteristics of CdSe core/shell quantum dots at cryogenic temperatures using a hybrid system of a single quantum dot and an optical nanofiber.
The key point is to control the emission species of quantum dot to charged excitons, known as trions, which have superior characteristics to neutral excitons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss photo-luminescence characteristics of CdSe core/shell quantum dots
at cryogenic temperatures using a hybrid system of a single quantum dot and an
optical nanofiber. The key point is to control the emission species of quantum
dot to charged excitons, known as trions, which have superior characteristics
to neutral excitons. We investigate the photocharging behavior for the quantum
dots by varying the wavelength and intensity of irradiating laser light, and
establish a method to create a permanently charged situation which lasts as
long as the cryogenic temperature is maintained. The present photocharging
method may open a new route to applying the CdSe quantum dots in quantum
photonics, and the hybrid system of photocharged quantum-dot and optical
nanofiber may readily be applicable to a fiber-in-line single-photon generator.
Related papers
- Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Arbitrary structured quantum emission with a multifunctional imaging
metalens [3.6975314342823995]
We introduce the use of an ultrathin polarisation-beam-splitting metalens for the arbitrary structuring of quantum emission at room temperature.
The hybrid quantum metalens enables simultaneous manipulation of multiple degrees of freedom of a quantum light source.
The demonstrated arbitrary wavefront shaping of quantum emission in multiple degrees of freedom could unleash the full potential of solid-state SPEs.
arXiv Detail & Related papers (2022-09-10T02:14:57Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - Dynamic control of Purcell enhanced emission of erbium ions in
nanoparticles [0.0]
We demonstrate the control of the Purcell enhanced emission of a small ensemble of erbium ions doped into nanoparticles.
We can tune the cavity on- and out of-resonance by controlling its length with sub-nanometer precision.
This allows us to shape in real time the Purcell enhanced emission of the ions and to achieve full control over the emitted photons' waveforms.
arXiv Detail & Related papers (2020-01-23T14:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.