Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics
- URL: http://arxiv.org/abs/2205.08481v1
- Date: Tue, 17 May 2022 16:51:29 GMT
- Title: Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics
- Authors: Alexander Senichev, Samuel Peana, Zachariah O. Martin, Omer Yesilyurt,
Demid Sychev, Alexei S. Lagutchev, Alexandra Boltasseva, Vladimir M. Shalaev
- Abstract summary: We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
- Score: 97.5153823429076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent discovery of room temperature intrinsic single-photon emitters in
silicon nitride (SiN) provides the unique opportunity for seamless monolithic
integration of quantum light sources with the well-established SiN photonic
platform. In this work, we develop a novel approach to realize planar
waveguides made of low-autofluorescing SiN with intrinsic quantum emitters and
demonstrate the single-photon emission coupling into the waveguide mode. The
observed emission coupling from these emitters is found to be in line with
numerical simulations. The coupling of the single-photon emission to a
waveguide mode is confirmed by second-order autocorrelation measurements of
light outcoupled off the photonic chip by grating couplers. Fitting the
second-order autocorrelation histogram yields $g^{(2)}(0)=0.35\pm0.12$ without
spectral filtering or background correction with an outcoupled photon rate of
$10^4$ counts per second. This demonstrates the first successful coupling of
photons from intrinsic single-photon emitters in SiN to monolithically
integrated waveguides made of the same material. The results of our work pave
the way toward the realization of scalable, technology-ready quantum photonic
integrated circuitry efficiently interfaced with solid-state quantum emitters.
Related papers
- Highly indistinguishable single photons from droplet-etched GaAs quantum
dots integrated in single-mode waveguides and beamsplitters [0.0]
GaAs quantum dots (QDs) obtained by droplet etching epitaxy show excellent performances with visibilities close to one for both individual and remote emitters.
We show the first implementation in this direction, realizing the key passive elements needed in photonic integrated circuits (PICs)
We study both the statistical distribution of wavelength, linewidth and decay times of the excitonic line of multiple QDs, as well as the quantum optical properties of individual emitters under resonant excitation.
arXiv Detail & Related papers (2023-10-18T11:34:11Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Independent electrical control of two quantum dots coupled through a
photonic-crystal waveguide [0.49252227263015774]
Two semiconductor quantum dot emitters are efficiently coupled to a photonic-crystal waveguide.
We exploit the single-photon stream from one quantum dot to perform spectroscopy on the second quantum dot positioned 16$mu$m away in the waveguide.
arXiv Detail & Related papers (2023-03-01T09:13:47Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.