論文の概要: CRNet: Cross-Reference Networks for Few-Shot Segmentation
- arxiv url: http://arxiv.org/abs/2003.10658v1
- Date: Tue, 24 Mar 2020 04:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 09:07:25.632981
- Title: CRNet: Cross-Reference Networks for Few-Shot Segmentation
- Title(参考訳): CRNet:Few-Shotセグメンテーションのためのクロスリファレンスネットワーク
- Authors: Weide Liu, Chi Zhang, Guosheng Lin, Fayao Liu
- Abstract要約: 少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
- 参考スコア(独自算出の注目度): 59.85183776573642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past few years, state-of-the-art image segmentation algorithms are
based on deep convolutional neural networks. To render a deep network with the
ability to understand a concept, humans need to collect a large amount of
pixel-level annotated data to train the models, which is time-consuming and
tedious. Recently, few-shot segmentation is proposed to solve this problem.
Few-shot segmentation aims to learn a segmentation model that can be
generalized to novel classes with only a few training images. In this paper, we
propose a cross-reference network (CRNet) for few-shot segmentation. Unlike
previous works which only predict the mask in the query image, our proposed
model concurrently make predictions for both the support image and the query
image. With a cross-reference mechanism, our network can better find the
co-occurrent objects in the two images, thus helping the few-shot segmentation
task. We also develop a mask refinement module to recurrently refine the
prediction of the foreground regions. For the $k$-shot learning, we propose to
finetune parts of networks to take advantage of multiple labeled support
images. Experiments on the PASCAL VOC 2012 dataset show that our network
achieves state-of-the-art performance.
- Abstract(参考訳): 過去数年間、最先端の画像セグメンテーションアルゴリズムは深層畳み込みニューラルネットワークに基づいている。
ディープネットワークを概念を理解する能力でレンダリングするには、人間が大量のピクセルレベルの注釈付きデータを収集してモデルを訓練する必要がある。
近年,この問題を解決するために少数ショットセグメンテーションが提案されている。
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
本稿では,数ショットセグメンテーションのためのクロスリファレンスネットワーク(CRNet)を提案する。
クエリ画像のマスクのみを予測する従来の作業とは異なり,提案モデルでは,サポート画像とクエリ画像の両方に対して同時に予測を行う。
相互参照機構により、我々のネットワークは2つの画像に共起するオブジェクトをよりよく見つけることができるので、数発のセグメンテーションタスクに役立つ。
また,フォアグラウンド領域の予測を精錬するために,マスクリファインメントモジュールを開発した。
k$-shot学習のために、複数のラベル付きサポートイメージを活用するために、ネットワークの一部を微調整することを提案する。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
関連論文リスト
- IFSENet : Harnessing Sparse Iterations for Interactive Few-shot Segmentation Excellence [2.822194296769473]
新しいクラスのセグメンテーションを学ぶために必要な画像の数を減らします。
インタラクティブなセグメンテーション技術は、一度に1つのオブジェクトのセグメンテーションを漸進的に改善することのみに焦点を当てます。
2つの概念を組み合わせることで、新しいクラスのセグメンテーションモデルをトレーニングするのに要する労力を大幅に削減する。
論文 参考訳(メタデータ) (2024-03-22T10:15:53Z) - Self-Correlation and Cross-Correlation Learning for Few-Shot Remote
Sensing Image Semantic Segmentation [27.59330408178435]
リモートセマンティックセマンティックセマンティックセマンティクスは、クエリイメージからターゲットオブジェクトをセグメントすることを学ぶことを目的としている。
本稿では,数発のリモートセンシング画像セマンティックセマンティックセグメンテーションのための自己相関・相互相関学習ネットワークを提案する。
本モデルは,サポート画像とクエリ画像の自己相関と相互相関の両方を考慮し,一般化を促進させる。
論文 参考訳(メタデータ) (2023-09-11T21:53:34Z) - CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global
Conditional Networks [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
複数ショットセグメンテーションのためのクロスリファレンス・ローカル・グローバル・ネットワーク(CRCNet)を提案する。
我々のネットワークは、相互参照機構により、2つの画像に共起する物体をよりよく見つけることができる。
論文 参考訳(メタデータ) (2022-08-23T06:46:18Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。