Organ Segmentation From Full-size CT Images Using Memory-Efficient FCN
- URL: http://arxiv.org/abs/2003.10690v1
- Date: Tue, 24 Mar 2020 07:12:45 GMT
- Title: Organ Segmentation From Full-size CT Images Using Memory-Efficient FCN
- Authors: Chenglong Wang, Masahiro Oda, Kensaku Mori
- Abstract summary: In medical image segmentation tasks, subvolume cropping has become a common preprocessing.
We present a memory-efficient fully convolutional network (FCN) incorporated with several memory-optimized techniques.
- Score: 10.411340412305849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a memory-efficient fully convolutional network (FCN)
incorporated with several memory-optimized techniques to reduce the run-time
GPU memory demand during training phase. In medical image segmentation tasks,
subvolume cropping has become a common preprocessing. Subvolumes (or small
patch volumes) were cropped to reduce GPU memory demand. However, small patch
volumes capture less spatial context that leads to lower accuracy. As a pilot
study, the purpose of this work is to propose a memory-efficient FCN which
enables us to train the model on full size CT image directly without subvolume
cropping, while maintaining the segmentation accuracy. We optimize our network
from both architecture and implementation. With the development of computing
hardware, such as graphics processing unit (GPU) and tensor processing unit
(TPU), now deep learning applications is able to train networks with large
datasets within acceptable time. Among these applications, semantic
segmentation using fully convolutional network (FCN) also has gained a
significant improvement against traditional image processing approaches in both
computer vision and medical image processing fields. However, unlike general
color images used in computer vision tasks, medical images have larger scales
than color images such as 3D computed tomography (CT) images, micro CT images,
and histopathological images. For training these medical images, the large
demand of computing resource become a severe problem. In this paper, we present
a memory-efficient FCN to tackle the high GPU memory demand challenge in organ
segmentation problem from clinical CT images. The experimental results
demonstrated that our GPU memory demand is about 40% of baseline architecture,
parameter amount is about 30% of the baseline.
Related papers
- Less Memory Means smaller GPUs: Backpropagation with Compressed Activations [1.7065506903618906]
The ever-growing scale of deep neural networks (DNNs) has lead to an equally rapid growth in computational resource requirements.
Many recent architectures, most prominently Large Language Models, have to be trained using supercomputers with thousands of accelerators.
With this approach we are able to reduce the peak memory consumption by 29% at the cost of a longer training schedule.
arXiv Detail & Related papers (2024-09-18T11:57:05Z) - μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X-ray computed microtomography (mu-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples.
extracting relevant information from 3D images requires semantic segmentation of the regions of interest.
We propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus.
arXiv Detail & Related papers (2024-06-24T15:29:08Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Memory-efficient Segmentation of High-resolution Volumetric MicroCT
Images [11.723370840090453]
We propose a memory-efficient network architecture for 3D high-resolution image segmentation.
The network incorporates both global and local features via a two-stage U-net-based cascaded framework.
Experiments show that it outperforms state-of-the-art 3D segmentation methods in terms of both segmentation accuracy and memory efficiency.
arXiv Detail & Related papers (2022-05-31T16:42:48Z) - Efficient Multi-Organ Segmentation Using SpatialConfiguration-Net with
Low GPU Memory Requirements [8.967700713755281]
In this work, we employ a multi-organ segmentation model based on the SpatialConfiguration-Net (SCN)
We modified the architecture of the segmentation model to reduce its memory footprint without drastically impacting the quality of the predictions.
Lastly, we implemented a minimal inference script for which we optimized both, execution time and required GPU memory.
arXiv Detail & Related papers (2021-11-26T17:47:10Z) - CAN3D: Fast 3D Medical Image Segmentation via Compact Context
Aggregation [6.188937569449575]
We present a compact convolutional neural network with a shallow memory footprint to efficiently reduce the number of model parameters required for state-of-art performance.
The proposed network can maintain data integrity by directly processing large full-size 3D input volumes with no patches required.
arXiv Detail & Related papers (2021-09-12T06:27:59Z) - Memory Efficient Meta-Learning with Large Images [62.70515410249566]
Meta learning approaches to few-shot classification are computationally efficient at test time requiring just a few optimization steps or single forward pass to learn a new task.
This limitation arises because a task's entire support set, which can contain up to 1000 images, must be processed before an optimization step can be taken.
We propose LITE, a general and memory efficient episodic training scheme that enables meta-training on large tasks composed of large images on a single GPU.
arXiv Detail & Related papers (2021-07-02T14:37:13Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade.
CNNs are capable of learning robust representations of the data directly from the RGB pixels.
Deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years.
arXiv Detail & Related papers (2020-12-26T15:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.