Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training
- URL: http://arxiv.org/abs/2307.16896v1
- Date: Mon, 31 Jul 2023 17:59:42 GMT
- Title: Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training
- Authors: Jeya Maria Jose Valanarasu, Yucheng Tang, Dong Yang, Ziyue Xu, Can
Zhao, Wenqi Li, Vishal M. Patel, Bennett Landman, Daguang Xu, Yufan He,
Vishwesh Nath
- Abstract summary: This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
- Score: 51.16994853817024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Harnessing the power of pre-training on large-scale datasets like ImageNet
forms a fundamental building block for the progress of representation
learning-driven solutions in computer vision. Medical images are inherently
different from natural images as they are acquired in the form of many
modalities (CT, MR, PET, Ultrasound etc.) and contain granulated information
like tissue, lesion, organs etc. These characteristics of medical images
require special attention towards learning features representative of local
context. In this work, we focus on designing an effective pre-training
framework for 3D radiology images. First, we propose a new masking strategy
called local masking where the masking is performed across channel embeddings
instead of tokens to improve the learning of local feature representations. We
combine this with classical low-level perturbations like adding noise and
downsampling to further enable low-level representation learning. To this end,
we introduce Disruptive Autoencoders, a pre-training framework that attempts to
reconstruct the original image from disruptions created by a combination of
local masking and low-level perturbations. Additionally, we also devise a
cross-modal contrastive loss (CMCL) to accommodate the pre-training of multiple
modalities in a single framework. We curate a large-scale dataset to enable
pre-training of 3D medical radiology images (MRI and CT). The proposed
pre-training framework is tested across multiple downstream tasks and achieves
state-of-the-art performance. Notably, our proposed method tops the public test
leaderboard of BTCV multi-organ segmentation challenge.
Related papers
- Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system.
Previous approaches primarily employ subject-specific models, sensitive to training sample size.
We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations.
During training, we leverage both visual and textual supervision for multi-modal brain decoding.
arXiv Detail & Related papers (2024-03-11T01:18:49Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Forward-Forward Contrastive Learning [4.465144120325802]
We propose Forward Forward Contrastive Learning (FFCL) as a novel pretraining approach for medical image classification.
FFCL achieves superior performance (3.69% accuracy over ImageNet pretrained ResNet-18) over existing pretraining models in the pneumonia classification task.
arXiv Detail & Related papers (2023-05-04T15:29:06Z) - HybridMIM: A Hybrid Masked Image Modeling Framework for 3D Medical Image
Segmentation [29.15746532186427]
HybridMIM is a novel hybrid self-supervised learning method based on masked image modeling for 3D medical image segmentation.
We learn the semantic information of medical images at three levels, including:1) partial region prediction to reconstruct key contents of the 3D image, which largely reduces the pre-training time burden.
The proposed framework is versatile to support both CNN and transformer as encoder backbones, and also enables to pre-train decoders for image segmentation.
arXiv Detail & Related papers (2023-03-18T04:43:12Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.