The Neutrino Casimir Force
- URL: http://arxiv.org/abs/2003.11032v3
- Date: Tue, 13 Oct 2020 23:59:31 GMT
- Title: The Neutrino Casimir Force
- Authors: Alexandria Costantino, Sylvain Fichet
- Abstract summary: We calculate the neutrino Casimir force between plates, allowing for two different mass eigenstates within the loop.
We discuss the possibility of distinguishing whether neutrinos are Majorana or Dirac fermions using these quantum forces.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the low energy effective theory of the weak interaction, a macroscopic
force arises when pairs of neutrinos are exchanged. We calculate the neutrino
Casimir force between plates, allowing for two different mass eigenstates
within the loop. We also provide the general potential between point sources.
We discuss the possibility of distinguishing whether neutrinos are Majorana or
Dirac fermions using these quantum forces.
Related papers
- Quantum coherence between mass eigenstates of a neutrino can be destroyed by its mass-momentum entanglement [0.0]
If a neutrino or antineutrino produced in the decay of an unstable particle is not entangled to its accompanying particles, its mass is correlated with its momentum.
This entanglement would destroy the quantum coherence between the neutrino's mass eigenstates in both the momentum and position representations.
arXiv Detail & Related papers (2024-10-29T08:20:40Z) - Quantum coherence in neutrino spin-flavor oscillations [0.0]
Coherence is a fundamental concept in quantum mechanics and can be precisely defined within quantum resource theory.
Previous studies on quantum coherence have focused on neutrino flavor oscillations (FO)
In this work, we investigate quantum coherence in neutrino SFO with three flavor mixing within the interstellar as well as intergalactic magnetic fields.
arXiv Detail & Related papers (2024-07-23T17:53:33Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Mass-energy equivalence in gravitationally bound quantum states of the
neutron [0.0]
We include the relativistic effects of mass-energy equivalence into the model of gravitationally bound neutrons.
We show that the neutron's additional weight due to mass-energy equivalence will cause a small shift in the neutron's eigenenergies and eigenstates.
arXiv Detail & Related papers (2022-06-17T13:30:48Z) - Quantum coherence in neutrino oscillation in matter [0.0]
neutrino oscillation occurs because the quantum states of the produced and detected neutrinos are a coherent superposition of the mass eigenstates.
We consider the decoherence due to the neutrino interaction in the material medium with constant density in addition to the decoherence coming from the localization properties.
arXiv Detail & Related papers (2022-04-26T14:19:39Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Theory of Neutrino Detection -- Flavor Oscillations and Weak Values [0.0]
We show that, in the relativistic limit, the quantum theory of neutrino oscillations can be described through the theory of weak measurements.
We write down the flavor equation of motion and calculate the flavor oscillation probability by showing precisely how a single neutrino interferes with itself.
arXiv Detail & Related papers (2020-02-18T22:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.