Theory of Neutrino Detection -- Flavor Oscillations and Weak Values
- URL: http://arxiv.org/abs/2002.07914v2
- Date: Wed, 26 Feb 2020 14:05:13 GMT
- Title: Theory of Neutrino Detection -- Flavor Oscillations and Weak Values
- Authors: Yago P. Porto-Silva, Marcos C. de Oliveira
- Abstract summary: We show that, in the relativistic limit, the quantum theory of neutrino oscillations can be described through the theory of weak measurements.
We write down the flavor equation of motion and calculate the flavor oscillation probability by showing precisely how a single neutrino interferes with itself.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that, in the relativistic limit, the quantum theory of neutrino
oscillations can be described through the theory of weak measurements with pre
and post-selection. The weak nature of neutrino detection allows simultaneous
determination of flavor and energy without problems related to the collapse of
the wavefunction. Together with post-selection, a non-trivial quantum
interference emerges, allowing one to describe a flavor neutrino as one single
particle, despite its superposition of masses. We write down the flavor
equation of motion and calculate the flavor oscillation probability by showing
precisely how a single neutrino interferes with itself.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Quantum mismatch: a powerful measure of "quantumness" in neutrino
oscillations [0.0]
We propose a measure of quantumness in neutrino oscillations, which precisely extracts the interference term in the two-flavor limit.
These measures are applicable for long-baseline and reactor neutrino experiments that measure neutrino survival probabilities with negligible matter effects.
arXiv Detail & Related papers (2023-04-05T14:50:36Z) - Out of this world neutrino oscillations [0.0]
We study how vacuum neutrino oscillations can be affected by a causal, nonlinear and state-dependent modification of quantum field theory.
The effect is induced by a Higgs-neutrino Yukawa interaction that causes a nonlinear interference between the neutrino mass eigenstates.
arXiv Detail & Related papers (2022-08-22T19:49:01Z) - Predicting leptonic CP violation via minimization of neutrino
entanglement [68.8204255655161]
We find a theoretical prediction consistent with either no CP-violation or a very small presence of it.
We show how a minimization principle of quantum entanglement between the oscillating flavors of a neutrino leads to a unique prediction for the CP-violation phase in the neutrino sector without assuming extra symmetries in the Standard Model.
arXiv Detail & Related papers (2022-07-07T13:59:55Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Role of non-gaussian quantum fluctuations in neutrino entanglement [0.0]
neutrino-neutrino coherent scattering can give rise to nontrivial quantum entanglement among neutrinos.
We observe that the entanglement induced by the coupling leads to strong delocalization in phase-space with largely non-Gaussian quantum fluctuations.
The link between the neutrino entanglement and quantum fluctuations is illustrated using the one- and two-neutrino entropy.
arXiv Detail & Related papers (2022-05-19T08:30:58Z) - Neutrino mixing and oscillations in quantum field theory: a
comprehensive introduction [0.0]
We show that the quantum field theoretical framework, where flavor vacuum is defined, permits to give a precise definition of flavor states.
We show that the gauge theory structure underlies the neutrino mixing phenomenon and that there exist entanglement between mixed neutrinos.
arXiv Detail & Related papers (2021-11-23T11:51:43Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Intrinsic quantum coherence in particle oscillations [0.0]
In this talk, several inconsistencies of the standard approach to particle oscillations will be explained.
The massive neutrino states are interpreted as quasiparticles on a vacuum condensate of "Cooper pairs" of massless neutrinos.
The newly defined oscillating particle states are for neutrino oscillations what the Klauder--Sudarshan--Glauber coherent states are for quantum optics.
arXiv Detail & Related papers (2020-12-29T17:35:51Z) - The Neutrino Casimir Force [77.34726150561087]
We calculate the neutrino Casimir force between plates, allowing for two different mass eigenstates within the loop.
We discuss the possibility of distinguishing whether neutrinos are Majorana or Dirac fermions using these quantum forces.
arXiv Detail & Related papers (2020-03-24T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.