Efficient Algorithms for Multidimensional Segmented Regression
- URL: http://arxiv.org/abs/2003.11086v1
- Date: Tue, 24 Mar 2020 19:39:34 GMT
- Title: Efficient Algorithms for Multidimensional Segmented Regression
- Authors: Ilias Diakonikolas and Jerry Li and Anastasia Voloshinov
- Abstract summary: We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
- Score: 42.046881924063044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the fundamental problem of fixed design {\em multidimensional
segmented regression}: Given noisy samples from a function $f$, promised to be
piecewise linear on an unknown set of $k$ rectangles, we want to recover $f$ up
to a desired accuracy in mean-squared error. We provide the first sample and
computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple iterative merging approach, which is novel in
the multidimensional setting. Our experimental evaluation on both synthetic and
real datasets shows that our algorithm is competitive and in some cases
outperforms state-of-the-art heuristics. Code of our implementation is
available at
\url{https://github.com/avoloshinov/multidimensional-segmented-regression}.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Uncertainty quantification for iterative algorithms in linear models with application to early stopping [4.150180443030652]
This paper investigates the iterates $hbb1,dots,hbbT$ obtained from iterative algorithms in high-dimensional linear regression problems.
The analysis and proposed estimators are applicable to Gradient Descent (GD), GD and their accelerated variants such as Fast Iterative Soft-Thresholding (FISTA)
arXiv Detail & Related papers (2024-04-27T10:20:41Z) - Noise misleads rotation invariant algorithms on sparse targets [0.0]
We show that the class of rotation invariant algorithms are suboptimal for learning sparse linear problems.
We prove this via a lower bound for the Bayes optimal algorithm on a rotationally symmetrized problem.
We then prove much lower upper bounds on the same problem for simple non-rotation invariant algorithms.
arXiv Detail & Related papers (2024-03-05T06:25:19Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
We show that the problem suffers from a $frackSNR2$-to-$frack2SNR2$ statistical-to-computational gap.
We also analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem.
arXiv Detail & Related papers (2023-03-03T18:03:49Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - A Data-Driven Line Search Rule for Support Recovery in High-dimensional
Data Analysis [5.180648702293017]
We propose a novel and efficient data-driven line search rule to adaptively determine the appropriate step size.
A large number of comparisons with state-of-the-art algorithms in linear and logistic regression problems show the stability, effectiveness and superiority of the proposed algorithms.
arXiv Detail & Related papers (2021-11-21T12:18:18Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.