A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
- URL: http://arxiv.org/abs/2409.04733v1
- Date: Sat, 7 Sep 2024 06:37:23 GMT
- Title: A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval
- Authors: Adarsh Barik, Anand Krishna, Vincent Y. F. Tan,
- Abstract summary: In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
- Score: 56.67706781191521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the robust phase retrieval problem where the task is to recover an unknown signal $\theta^* \in \mathbb{R}^d$ in the presence of potentially arbitrarily corrupted magnitude-only linear measurements. We propose an alternating minimization approach that incorporates an oracle solver for a non-convex optimization problem as a subroutine. Our algorithm guarantees convergence to $\theta^*$ and provides an explicit polynomial dependence of the convergence rate on the fraction of corrupted measurements. We then provide an efficient construction of the aforementioned oracle under a sparse arbitrary outliers model and offer valuable insights into the geometric properties of the loss landscape in phase retrieval with corrupted measurements. Our proposed oracle avoids the need for computationally intensive spectral initialization, using a simple gradient descent algorithm with a constant step size and random initialization instead. Additionally, our overall algorithm achieves nearly linear sample complexity, $\mathcal{O}(d \, \mathrm{polylog}(d))$.
Related papers
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Orthogonal Directions Constrained Gradient Method: from non-linear
equality constraints to Stiefel manifold [16.099883128428054]
We propose a novel algorithm, the Orthogonal Directions Constrained Method (ODCGM)
ODCGM only requires computing a projection onto a vector space.
We show that ODCGM exhibits the near-optimal oracle complexities.
arXiv Detail & Related papers (2023-03-16T12:25:53Z) - Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression [20.00109111254507]
We show that the problem suffers from a $frackSNR2$-to-$frack2SNR2$ statistical-to-computational gap.
We also analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem.
arXiv Detail & Related papers (2023-03-03T18:03:49Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
This paper proposes a working set algorithm for non-regular regularizers with convergence guarantees.
Our results demonstrate high gain compared to the full problem solver for both block-coordinates or a gradient solver.
arXiv Detail & Related papers (2020-06-24T07:40:31Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.