論文の概要: Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach
- arxiv url: http://arxiv.org/abs/2003.11163v2
- Date: Fri, 10 Apr 2020 05:48:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 03:24:51.638659
- Title: Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach
- Title(参考訳): 人物の姿勢推定のための多視点画像を用いたウェアラブルIMUの幾何学的アプローチ
- Authors: Zhe Zhang, Chunyu Wang, Wenhu Qin, Wenjun Zeng
- Abstract要約: 多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2Dのポーズを検出し、3D空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
- 参考スコア(独自算出の注目度): 76.10879433430466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to estimate 3D human pose from multi-view images and a few IMUs
attached at person's limbs. It operates by firstly detecting 2D poses from the
two signals, and then lifting them to the 3D space. We present a geometric
approach to reinforce the visual features of each pair of joints based on the
IMUs. This notably improves 2D pose estimation accuracy especially when one
joint is occluded. We call this approach Orientation Regularized Network (ORN).
Then we lift the multi-view 2D poses to the 3D space by an Orientation
Regularized Pictorial Structure Model (ORPSM) which jointly minimizes the
projection error between the 3D and 2D poses, along with the discrepancy
between the 3D pose and IMU orientations. The simple two-step approach reduces
the error of the state-of-the-art by a large margin on a public dataset. Our
code will be released at https://github.com/CHUNYUWANG/imu-human-pose-pytorch.
- Abstract(参考訳): 多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2dのポーズを検出し、それからそれを3dの空間に持ち上げる。
IMUに基づいて各関節の視覚的特徴を強化するための幾何学的手法を提案する。
これにより、特に片方の関節が閉塞された場合、特に2次元ポーズ推定精度が向上する。
このアプローチを Orientation Regularized Network (ORN) と呼ぶ。
次に、3dポーズと2dポーズの投影誤差と3dポーズとimmオリエンテーションとの差を共同で最小化する向き合わせ正規化画像構造モデル(orpsm)により、マルチビュー2dポーズを3d空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
私たちのコードはhttps://github.com/chunyuwang/imu-human-pose-pytorchでリリースされる。
関連論文リスト
- MPL: Lifting 3D Human Pose from Multi-view 2D Poses [75.26416079541723]
本稿では,大規模かつリッチなトレーニングデータセットが存在する2次元ポーズ推定と,トランスフォーマーネットワークを用いた2次元から3次元ポーズリフトを提案する。
実験の結果,MPJPEの誤差は2次元ポーズを三角測量した3次元ポーズと比較して最大45%減少することがわかった。
論文 参考訳(メタデータ) (2024-08-20T12:55:14Z) - Unsupervised Multi-Person 3D Human Pose Estimation From 2D Poses Alone [4.648549457266638]
本研究は,教師なし多人数2D-3Dポーズ推定の実現可能性について検討した最初の研究の1つである。
本手法では,各被験者の2次元ポーズを3次元に独立に持ち上げ,それらを共有3次元座標系で組み合わせる。
これにより、ポーズの正確な3D再構成を検索することができる。
論文 参考訳(メタデータ) (2023-09-26T11:42:56Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcanは、3D人間のポーズ推定、クラッドされた2Dポーズからの3Dポーズ推定、3Dポーズ完了をtextocbsingleフレームワークで処理する。
MPI-INF-3DHPにおいて、広く使われているポーズデータセットの広範な実験とアブレーション研究を行い、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-06-29T10:30:00Z) - Shape-aware Multi-Person Pose Estimation from Multi-View Images [47.13919147134315]
提案した粗大なパイプラインは、まず複数のカメラビューからノイズの多い2次元の観測結果を3次元空間に集約する。
最終的なポーズ推定は、高信頼度多視点2次元観測と3次元関節候補をリンクする新しい最適化スキームから得られる。
論文 参考訳(メタデータ) (2021-10-05T20:04:21Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
本稿では,VoxelTrackを用いて,多人数の3次元ポーズ推定と,広義のベースラインで分離された少数のカメラからの追跡を行う。
マルチブランチネットワークを使用して、環境中のすべての人に3Dポーズと再識別機能(Re-ID)を共同で推定する。
これは、Shelf、Campus、CMU Panopticの3つの公開データセットに対して、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-08-05T08:35:44Z) - SVMA: A GAN-based model for Monocular 3D Human Pose Estimation [0.8379286663107844]
1枚の画像から抽出した2次元関節位置から3次元人間のポーズを復元するための教師なしGANモデルを提案する。
再投射制約を考慮すると,本モデルはカメラを推定し,推定された3次元ポーズを元の2次元ポーズに再投射することができる。
Human3.6Mの結果,本手法は最先端の手法を全て上回り,MPI-INF-3DHPの手法は最先端の手法を約15.0%上回ることがわかった。
論文 参考訳(メタデータ) (2021-06-10T09:43:57Z) - SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation [46.85865451812981]
本稿では,まず,この2.5D表現に基づいて,まず2.5D表現の集合を回帰し,さらに深部認識部分関連アルゴリズムを用いて3D絶対ポーズを再構成するシステムを提案する。
このような単発ボトムアップ方式により、システムは人物間の深度関係をよりよく学習し、推論し、3Dと2Dの両方のポーズ推定を改善することができる。
論文 参考訳(メタデータ) (2020-08-26T09:56:07Z) - Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh
Recovery from a 2D Human Pose [70.23652933572647]
本稿では,人間のメッシュ頂点の3次元座標を直接推定するグラフ畳み込みニューラルネットワーク(GraphCNN)を提案する。
我々のPose2Meshは、様々なベンチマークデータセットにおいて、以前の3次元人間のポーズとメッシュ推定方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-20T16:01:56Z) - VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild
Environment [80.77351380961264]
複数のカメラビューから複数の人の3Dポーズを推定する手法を提案する。
本稿では,3D空間で動作するエンドツーエンドのソリューションを提案する。
本稿では,各提案の詳細な3次元ポーズを推定するために,Pose Regression Network (PRN)を提案する。
論文 参考訳(メタデータ) (2020-04-13T23:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。