Continuous quantum error correction for evolution under time-dependent
Hamiltonians
- URL: http://arxiv.org/abs/2003.11248v2
- Date: Sun, 16 Aug 2020 01:59:11 GMT
- Title: Continuous quantum error correction for evolution under time-dependent
Hamiltonians
- Authors: J. Atalaya, S. Zhang, M. Y. Niu, A. Babakhani, H. C. H. Chan, J.
Epstein, K. B. Whaley
- Abstract summary: We develop a protocol for continuous operation of a quantum error correcting code for protection of coherent evolution due to an encoded Hamiltonian.
For quantum memory, we show that our continuous operation protocol yields a logical error rate that is slightly larger than the one obtained from using the optimal Wonham filter for error diagnosis.
These results suggest that a continuous implementation is suitable for quantum error correction in the presence of encoded time-dependent Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a protocol for continuous operation of a quantum error correcting
code for protection of coherent evolution due to an encoded Hamiltonian against
environmental errors, using the three qubit bit flip code and bit flip errors
as a canonical example. To detect errors in real time, we filter the output
signals from continuous measurement of the error syndrome operators and use a
double thresholding protocol for error diagnosis, while correction of errors is
done as in the conventional operation. We optimize our continuous operation
protocol for evolution under quantum memory and under quantum annealing, by
maximizing the fidelity between the target and actual logical states at a
specified final time. In the case of quantum memory we show that our continuous
operation protocol yields a logical error rate that is slightly larger than the
one obtained from using the optimal Wonham filter for error diagnosis. The
advantage of our protocol is that it can be simpler to implement. For quantum
annealing, we show that our continuous quantum error correction protocol can
significantly reduce the final logical state infidelity when the continuous
measurements are sufficiently strong relative to the strength of the
time-dependent Hamiltonian, and that it can also significantly reduces the run
time relative to that of a classical encoding. These results suggest that a
continuous implementation is suitable for quantum error correction in the
presence of encoded time-dependent Hamiltonians, opening the possibility of
many applications in quantum simulation and quantum annealing.
Related papers
- Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
A fault-tolerant approach to reliable quantum memory is essential for scalable quantum computing.
We propose a decoder that utilizes a space-time Tanner graph across multiple rounds of syndrome extraction with mixed-alphabet error variables.
Our simulations demonstrate high error thresholds of 0.4%-0.87% and strong error-floor performance for topological code families.
arXiv Detail & Related papers (2024-09-27T12:21:45Z) - Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Error metric for non-trace-preserving quantum operations [3.6492255655113395]
We study the problem of measuring errors in non-trace-preserving quantum operations.
We propose an error metric that efficiently provides an upper bound on the trace distance between the normalized output states.
arXiv Detail & Related papers (2021-10-05T18:54:14Z) - Experimental demonstration of continuous quantum error correction [0.0]
We implement a continuous quantum bit-flip correction code in a multi-qubit architecture.
We achieve an average bit-flip detection efficiency of up to 91%.
Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture.
arXiv Detail & Related papers (2021-07-23T18:00:55Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.