Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search
- URL: http://arxiv.org/abs/2003.11613v1
- Date: Sat, 7 Mar 2020 12:33:01 GMT
- Title: Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search
- Authors: Haoyu Zhang, Yaochu Jin, Ran Cheng, and Kuangrong Hao
- Abstract summary: evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms.
This paper proposes a new framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data.
We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms.
- Score: 22.483917379706725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of a deep neural network is heavily dependent on its
architecture and various neural architecture search strategies have been
developed for automated network architecture design. Recently, evolutionary
neural architecture search (ENAS) has received increasing attention due to the
attractive global optimization capability of evolutionary algorithms. However,
ENAS suffers from extremely high computation costs because a large number of
performance evaluations is usually required in evolutionary optimization and
training deep neural networks is itself computationally very intensive. To
address this issue, this paper proposes a new evolutionary framework for fast
ENAS based on directed acyclic graph, in which parents are randomly sampled and
trained on each mini-batch of training data. In addition, a node inheritance
strategy is adopted to generate offspring individuals and their fitness is
directly evaluated without training. To enhance the feature processing
capability of the evolved neural networks, we also encode a channel attention
mechanism in the search space. We evaluate the proposed algorithm on the widely
used datasets, in comparison with 26 state-of-the-art peer algorithms. Our
experimental results show the proposed algorithm is not only computationally
much more efficiently, but also highly competitive in learning performance.
Related papers
- An automatic selection of optimal recurrent neural network architecture
for processes dynamics modelling purposes [0.0]
The research has included four original proposals of algorithms dedicated to neural network architecture search.
Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods.
The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.
arXiv Detail & Related papers (2023-09-25T11:06:35Z) - Neuroevolution of Recurrent Architectures on Control Tasks [3.04585143845864]
We implement a massively parallel evolutionary algorithm and run experiments on all 19 OpenAI Gym state-based reinforcement learning control tasks.
We find that dynamic agents match or exceed the performance of gradient-based agents while utilizing orders of magnitude fewer parameters.
arXiv Detail & Related papers (2023-04-03T16:29:18Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
We use Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm.
Experiments show that our proposal achieves promising results in all the objectives, and direct relation are presented.
arXiv Detail & Related papers (2023-02-20T19:33:38Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - On the performance of deep learning for numerical optimization: an
application to protein structure prediction [0.0]
We present a study on the performance of the deep learning models to deal with global optimization problems.
The proposed approach adopts the idea of the neural architecture search (NAS) to generate efficient neural networks.
Experiments reveal that the generated learning models can achieve competitive results when compared to hand-designed algorithms.
arXiv Detail & Related papers (2020-12-17T17:01:30Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.