Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness
- URL: http://arxiv.org/abs/2302.10253v2
- Date: Mon, 5 Feb 2024 13:53:45 GMT
- Title: Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness
- Authors: Javier Poyatos, Daniel Molina, Aitor Mart\'inez, Javier Del Ser,
Francisco Herrera
- Abstract summary: This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
We use Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm.
Experiments show that our proposal achieves promising results in all the objectives, and direct relation are presented.
- Score: 15.29595828816055
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Evolutionary Computation algorithms have been used to solve optimization
problems in relation with architectural, hyper-parameter or training
configuration, forging the field known today as Neural Architecture Search.
These algorithms have been combined with other techniques such as the pruning
of Neural Networks, which reduces the complexity of the network, and the
Transfer Learning, which lets the import of knowledge from another problem
related to the one at hand. The usage of several criteria to evaluate the
quality of the evolutionary proposals is also a common case, in which the
performance and complexity of the network are the most used criteria. This work
proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
MO-EvoPruneDeepTL uses Transfer Learning to adapt the last layers of Deep
Neural Networks, by replacing them with sparse layers evolved by a genetic
algorithm, which guides the evolution based in the performance, complexity and
robustness of the network, being the robustness a great quality indicator for
the evolved models. We carry out different experiments with several datasets to
assess the benefits of our proposal. Results show that our proposal achieves
promising results in all the objectives, and direct relation are presented
among them. The experiments also show that the most influential neurons help us
explain which parts of the input images are the most relevant for the
prediction of the pruned neural network. Lastly, by virtue of the diversity
within the Pareto front of pruning patterns produced by the proposal, it is
shown that an ensemble of differently pruned models improves the overall
performance and robustness of the trained networks.
Related papers
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We introduce a novel class of Deep Sparse Coding (DSC) models.
We derive convergence rates for CNNs in their ability to extract sparse features.
Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - EvoPruneDeepTL: An Evolutionary Pruning Model for Transfer Learning
based Deep Neural Networks [15.29595828816055]
We propose an evolutionary pruning model for Transfer Learning based Deep Neural Networks.
EvoPruneDeepTL replaces the last fully-connected layers with sparse layers optimized by a genetic algorithm.
Results show the contribution of EvoPruneDeepTL and feature selection to the overall computational efficiency of the network.
arXiv Detail & Related papers (2022-02-08T13:07:55Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Transfer Learning Based Multi-Objective Evolutionary Algorithm for
Community Detection of Dynamic Complex Networks [1.693830041971135]
We propose a Feature Transfer Based Multi-Objective Optimization Algorithm (TMOGA) based on transfer learning and traditional multi-objective evolutionary algorithm framework.
We show that our algorithm can achieve better clustering effects compared with the state-of-the-art dynamic network community detection algorithms in diverse test problems.
arXiv Detail & Related papers (2021-09-30T17:16:51Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
We propose to adopt the efficient coding principle, rooted in information theory and developed in computational neuroscience.
We show that sparse coding can effectively maximize the entropy of the output signals.
Our experiments on a public image classification dataset demonstrate that using the structure learned from scratch by our proposed algorithm, one can achieve a classification accuracy comparable to the best expert-designed structure.
arXiv Detail & Related papers (2021-05-27T12:27:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Topological Insights into Sparse Neural Networks [16.515620374178535]
We introduce an approach to understand and compare sparse neural network topologies from the perspective of graph theory.
We first propose Neural Network Sparse Topology Distance (NNSTD) to measure the distance between different sparse neural networks.
We show that adaptive sparse connectivity can always unveil a plenitude of sparse sub-networks with very different topologies which outperform the dense model.
arXiv Detail & Related papers (2020-06-24T22:27:21Z) - Sampled Training and Node Inheritance for Fast Evolutionary Neural
Architecture Search [22.483917379706725]
evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms.
This paper proposes a new framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data.
We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms.
arXiv Detail & Related papers (2020-03-07T12:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.