R-FORCE: Robust Learning for Random Recurrent Neural Networks
- URL: http://arxiv.org/abs/2003.11660v1
- Date: Wed, 25 Mar 2020 22:08:03 GMT
- Title: R-FORCE: Robust Learning for Random Recurrent Neural Networks
- Authors: Yang Zheng, Eli Shlizerman
- Abstract summary: We propose a robust training method to enhance robustness of RRNN.
FORCE learning approach was shown to be applicable even for the challenging task of target-learning.
Our experiments indicate that R-FORCE facilitates significantly more stable and accurate target-learning for a wide class of RRNN.
- Score: 6.285241353736006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random Recurrent Neural Networks (RRNN) are the simplest recurrent networks
to model and extract features from sequential data. The simplicity however
comes with a price; RRNN are known to be susceptible to diminishing/exploding
gradient problem when trained with gradient-descent based optimization. To
enhance robustness of RRNN, alternative training approaches have been proposed.
Specifically, FORCE learning approach proposed a recursive least squares
alternative to train RRNN and was shown to be applicable even for the
challenging task of target-learning, where the network is tasked with
generating dynamic patterns with no guiding input. While FORCE training
indicates that solving target-learning is possible, it appears to be effective
only in a specific regime of network dynamics (edge-of-chaos). We thereby
investigate whether initialization of RRNN connectivity according to a tailored
distribution can guarantee robust FORCE learning. We are able to generate such
distribution by inference of four generating principles constraining the
spectrum of the network Jacobian to remain in stability region. This
initialization along with FORCE learning provides a robust training method,
i.e., Robust-FORCE (R-FORCE). We validate R-FORCE performance on various target
functions for a wide range of network configurations and compare with
alternative methods. Our experiments indicate that R-FORCE facilitates
significantly more stable and accurate target-learning for a wide class of
RRNN. Such stability becomes critical in modeling multi-dimensional sequences
as we demonstrate on modeling time-series of human body joints during physical
movements.
Related papers
- Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
We propose a supervised training procedure for RSNNs, where a second network is introduced only during the training.
The proposed training procedure consists of generating targets for both recurrent and readout layers.
We demonstrate the improved performance and noise robustness of the proposed full-FORCE training procedure to model 8 dynamical systems.
arXiv Detail & Related papers (2022-05-26T19:01:19Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Spiking Generative Adversarial Networks With a Neural Network
Discriminator: Local Training, Bayesian Models, and Continual Meta-Learning [31.78005607111787]
Training neural networks to reproduce spiking patterns is a central problem in neuromorphic computing.
This work proposes to train SNNs so as to match spiking signals rather than individual spiking signals.
arXiv Detail & Related papers (2021-11-02T17:20:54Z) - Selfish Sparse RNN Training [13.165729746380816]
We propose an approach to train sparse RNNs with a fixed parameter count in one single run, without compromising performance.
We achieve state-of-the-art sparse training results with various datasets on Penn TreeBank and Wikitext-2.
arXiv Detail & Related papers (2021-01-22T10:45:40Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning.
This paper introduces an online learning rule based on generalized expectation-maximization (GEM)
Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration.
arXiv Detail & Related papers (2020-07-23T10:03:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.