論文の概要: Classification of Chinese Handwritten Numbers with Labeled Projective
Dictionary Pair Learning
- arxiv url: http://arxiv.org/abs/2003.11700v3
- Date: Mon, 7 Dec 2020 12:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 21:13:54.308237
- Title: Classification of Chinese Handwritten Numbers with Labeled Projective
Dictionary Pair Learning
- Title(参考訳): ラベル付き投影辞書対学習による中国語手書き数字の分類
- Authors: Rasool Ameri, Ali Alameer, Saideh Ferdowsi, Kianoush Nazarpour, and
Vahid Abolghasemi
- Abstract要約: 我々は,識別可能性,空間性,分類誤差の3つの要因を取り入れたクラス固有辞書を設計する。
我々は、辞書原子を生成するために、新しい特徴空間、すなわち、向き付け勾配(HOG)のヒストグラムを採用する。
その結果,最先端のディープラーニング技術と比較して,分類性能が向上した(sim98%)。
- 参考スコア(独自算出の注目度): 1.8594711725515674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dictionary learning is a cornerstone of image classification. We set out to
address a longstanding challenge in using dictionary learning for
classification; that is to simultaneously maximise the discriminability and
sparse-representability power of the learned dictionaries. Upon this premise,
we designed class-specific dictionaries incorporating three factors:
discriminability, sparsity and classification error. We integrated these
metrics into a unified cost function and adopted a new feature space, i.e.,
histogram of oriented gradients (HOG), to generate the dictionary atoms. The
rationale of using HOG features for designing the dictionaries is their
strength in describing fine details of crowded images. The results of applying
the proposed method in the classification of Chinese handwritten numbers
demonstrated enhanced classification performance $(\sim98\%)$ compared to
state-of-the-art deep learning techniques (i.e., SqueezeNet, GoogLeNet and
MobileNetV2), but with a fraction of parameters. Furthermore, combination of
the HOG features with dictionary learning enhances the accuracy by $11\%$
compared to the case where only pixel domain data are used. These results were
supported when the proposed method was applied to both Arabic and English
handwritten number databases.
- Abstract(参考訳): 辞書学習は画像分類の基礎である。
我々は,辞書学習を分類に使用する長年の課題である,学習辞書の識別可能性とスパース表現力を同時に最大化することが課題である。
この前提のもと、識別可能性、空間性、分類誤差の3つの要素を組み込んだクラス固有辞書を設計した。
我々はこれらの指標を統一コスト関数に統合し、新しい特徴空間、すなわち向き付け勾配(HOG)のヒストグラムを採用して辞書原子を生成する。
辞書のデザインにHOG機能を使うことの理論的根拠は、混雑した画像の詳細を詳細に記述する際の長所である。
提案手法を中国語の手書き数分類に適用した結果,最先端のディープラーニング技術(swashnet,googlenet,mobilenetv2)と比較して分類性能が向上したが,パラメータはごくわずかであった。
さらに、HOG機能と辞書学習を組み合わせることで、ピクセルドメインデータのみを使用する場合と比較して、11\%の精度が向上する。
これらの結果は、アラビア文字と英語の手書き数字データベースに提案手法を適用したときに支持された。
関連論文リスト
- Evolving Interpretable Visual Classifiers with Large Language Models [34.4903887876357]
CLIPのようなマルチモーダル事前訓練モデルは、オープン語彙の柔軟性と高性能のため、ゼロショット分類に人気がある。
画像とクラスラベルの類似点を計算する視覚言語モデルは、ほとんどブラックボックスであり、解釈可能性の制限、バイアスのリスク、書き下がらない新しい視覚概念の発見ができない。
本稿では,視覚認識のための属性の解釈可能かつ差別的集合を検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T17:09:53Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
大規模事前訓練型視覚言語モデル(VLM)はゼロショット分類に有効であることが証明されている。
本稿では,アノテーションではなく,より広い語彙を前提とした,より難易度の高いゼロショット分類(Realistic Zero-Shot Classification)を提案する。
本稿では,ラベルのないデータから構造意味情報を抽出し,同時に自己学習を行う自己構造意味アライメント(S3A)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-24T17:56:46Z) - DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for
Open-world Detection [118.36746273425354]
本稿では,デザインされた概念辞書から知識の豊かさを生かして,オープンワールド検出のための並列視覚概念事前学習手法を提案する。
概念をそれらの記述で豊かにすることにより、オープンドメイン学習を促進するために、さまざまな概念間の関係を明確に構築する。
提案フレームワークは、例えばLVISデータセット上で、強力なゼロショット検出性能を示し、私たちのDetCLIP-TはGLIP-Tを9.9%向上させ、レアカテゴリで13.5%改善した。
論文 参考訳(メタデータ) (2022-09-20T02:01:01Z) - On Guiding Visual Attention with Language Specification [76.08326100891571]
注意をそらすのではなく,タスク関連機能に分類証拠を限定するためのアドバイスとして,ハイレベルな言語仕様を用いる。
この方法で空間的注意を監督することは、偏りのあるノイズのあるデータを用いた分類タスクの性能を向上させる。
論文 参考訳(メタデータ) (2022-02-17T22:40:19Z) - Discriminative Dictionary Learning based on Statistical Methods [0.0]
信号やデータのスパース表現(SR)は厳密な数学的誤り境界と証明を持つ十分に確立された理論を持つ。
最小損失の信号群を表現した辞書を辞書学習(DL)という。
MODとK-SVDは、画像「デノイング」や「インペインティング」といった画像処理における再構成ベースの応用に成功している。
論文 参考訳(メタデータ) (2021-11-17T10:45:10Z) - Cross-lingual Transfer for Text Classification with Dictionary-based
Heterogeneous Graph [10.64488240379972]
言語間テキスト分類では,高ソース言語におけるタスク固有トレーニングデータが利用可能であることが求められている。
このようなトレーニングデータの収集は,ラベル付けコストやタスク特性,プライバシの懸念などによって不可能になる可能性がある。
本稿では,ハイソース言語とバイリンガル辞書のタスク非依存語埋め込みのみを利用する代替手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T16:40:40Z) - More Than Words: Collocation Tokenization for Latent Dirichlet
Allocation Models [71.42030830910227]
モデルが異なる環境でクラスタリングの品質を測定するための新しい指標を提案する。
マージトークンでトレーニングされたトピックは、マージされていないモデルよりも、より明確で、一貫性があり、トピックを区別する効果が高いトピックキーをもたらすことを示す。
論文 参考訳(メタデータ) (2021-08-24T14:08:19Z) - Deep Semantic Dictionary Learning for Multi-label Image Classification [3.3989824361632337]
本稿では,辞書学習課題であるマルチラベル画像分類の解法に向けて,革新的な方法を提案する。
Deep Semantic Dictionary Learning(DSDL)という新しいエンドツーエンドモデルが設計されている。
コードとモデルを公開しました。
論文 参考訳(メタデータ) (2020-12-23T06:22:47Z) - TF-CR: Weighting Embeddings for Text Classification [6.531659195805749]
本稿では,単語埋め込みの計算において,高頻度のカテゴリー排他語を重み付け可能な新しい重み付け方式TF-CRを提案する。
16の分類データセットの実験はTF-CRの有効性を示し、既存の重み付け方式よりもパフォーマンススコアが向上した。
論文 参考訳(メタデータ) (2020-12-11T19:23:28Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z) - Lexical Sememe Prediction using Dictionary Definitions by Capturing
Local Semantic Correspondence [94.79912471702782]
セメムは人間の言語の最小の意味単位として定義されており、多くのNLPタスクで有用であることが証明されている。
本稿では,このようなマッチングを捕捉し,セメムを予測できるセメム対応プールモデルを提案する。
我々は,有名なSememe KB HowNetのモデルとベースライン手法を評価し,そのモデルが最先端のパフォーマンスを実現することを発見した。
論文 参考訳(メタデータ) (2020-01-16T17:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。