Classification of Chinese Handwritten Numbers with Labeled Projective
Dictionary Pair Learning
- URL: http://arxiv.org/abs/2003.11700v3
- Date: Mon, 7 Dec 2020 12:21:02 GMT
- Title: Classification of Chinese Handwritten Numbers with Labeled Projective
Dictionary Pair Learning
- Authors: Rasool Ameri, Ali Alameer, Saideh Ferdowsi, Kianoush Nazarpour, and
Vahid Abolghasemi
- Abstract summary: We design class-specific dictionaries incorporating three factors: discriminability, sparsity and classification error.
We adopt a new feature space, i.e., histogram of oriented gradients (HOG), to generate the dictionary atoms.
Results demonstrated enhanced classification performance $(sim98%)$ compared to state-of-the-art deep learning techniques.
- Score: 1.8594711725515674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dictionary learning is a cornerstone of image classification. We set out to
address a longstanding challenge in using dictionary learning for
classification; that is to simultaneously maximise the discriminability and
sparse-representability power of the learned dictionaries. Upon this premise,
we designed class-specific dictionaries incorporating three factors:
discriminability, sparsity and classification error. We integrated these
metrics into a unified cost function and adopted a new feature space, i.e.,
histogram of oriented gradients (HOG), to generate the dictionary atoms. The
rationale of using HOG features for designing the dictionaries is their
strength in describing fine details of crowded images. The results of applying
the proposed method in the classification of Chinese handwritten numbers
demonstrated enhanced classification performance $(\sim98\%)$ compared to
state-of-the-art deep learning techniques (i.e., SqueezeNet, GoogLeNet and
MobileNetV2), but with a fraction of parameters. Furthermore, combination of
the HOG features with dictionary learning enhances the accuracy by $11\%$
compared to the case where only pixel domain data are used. These results were
supported when the proposed method was applied to both Arabic and English
handwritten number databases.
Related papers
- Evolving Interpretable Visual Classifiers with Large Language Models [34.4903887876357]
Multimodal pre-trained models, such as CLIP, are popular for zero-shot classification due to their open-vocabulary flexibility and high performance.
vision-language models, which compute similarity scores between images and class labels, are largely black-box, with limited interpretability, risk for bias, and inability to discover new visual concepts not written down.
We present a novel method that discovers interpretable yet discriminative sets of attributes for visual recognition.
arXiv Detail & Related papers (2024-04-15T17:09:53Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for
Open-world Detection [118.36746273425354]
This paper presents a paralleled visual-concept pre-training method for open-world detection by resorting to knowledge enrichment from a designed concept dictionary.
By enriching the concepts with their descriptions, we explicitly build the relationships among various concepts to facilitate the open-domain learning.
The proposed framework demonstrates strong zero-shot detection performances, e.g., on the LVIS dataset, our DetCLIP-T outperforms GLIP-T by 9.9% mAP and obtains a 13.5% improvement on rare categories.
arXiv Detail & Related papers (2022-09-20T02:01:01Z) - On Guiding Visual Attention with Language Specification [76.08326100891571]
We use high-level language specification as advice for constraining the classification evidence to task-relevant features, instead of distractors.
We show that supervising spatial attention in this way improves performance on classification tasks with biased and noisy data.
arXiv Detail & Related papers (2022-02-17T22:40:19Z) - Discriminative Dictionary Learning based on Statistical Methods [0.0]
Sparse Representation (SR) of signals or data has a well founded theory with rigorous mathematical error bounds and proofs.
Training dictionaries such that they represent each class of signals with minimal loss is called Dictionary Learning (DL)
MOD and K-SVD have been successfully used in reconstruction based applications in image processing like image "denoising", "inpainting"
arXiv Detail & Related papers (2021-11-17T10:45:10Z) - Cross-lingual Transfer for Text Classification with Dictionary-based
Heterogeneous Graph [10.64488240379972]
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available.
Collecting such training data can be infeasible because of the labeling cost, task characteristics, and privacy concerns.
This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries.
arXiv Detail & Related papers (2021-09-09T16:40:40Z) - More Than Words: Collocation Tokenization for Latent Dirichlet
Allocation Models [71.42030830910227]
We propose a new metric for measuring the clustering quality in settings where the models differ.
We show that topics trained with merged tokens result in topic keys that are clearer, more coherent, and more effective at distinguishing topics than those unmerged models.
arXiv Detail & Related papers (2021-08-24T14:08:19Z) - Deep Semantic Dictionary Learning for Multi-label Image Classification [3.3989824361632337]
We present an innovative path towards the solution of the multi-label image classification which considers it as a dictionary learning task.
A novel end-to-end model named Deep Semantic Dictionary Learning (DSDL) is designed.
Our codes and models have been released.
arXiv Detail & Related papers (2020-12-23T06:22:47Z) - TF-CR: Weighting Embeddings for Text Classification [6.531659195805749]
We introduce a novel weighting scheme, Term Frequency-Category Ratio (TF-CR), which can weight high-frequency, category-exclusive words higher when computing word embeddings.
Experiments on 16 classification datasets show the effectiveness of TF-CR, leading to improved performance scores over existing weighting schemes.
arXiv Detail & Related papers (2020-12-11T19:23:28Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - Lexical Sememe Prediction using Dictionary Definitions by Capturing
Local Semantic Correspondence [94.79912471702782]
Sememes, defined as the minimum semantic units of human languages, have been proven useful in many NLP tasks.
We propose a Sememe Correspondence Pooling (SCorP) model, which is able to capture this kind of matching to predict sememes.
We evaluate our model and baseline methods on a famous sememe KB HowNet and find that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-01-16T17:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.