論文の概要: StrokeCoder: Path-Based Image Generation from Single Examples using
Transformers
- arxiv url: http://arxiv.org/abs/2003.11958v2
- Date: Thu, 11 Jun 2020 11:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 21:15:07.515406
- Title: StrokeCoder: Path-Based Image Generation from Single Examples using
Transformers
- Title(参考訳): strokecoder: トランスフォーマーを用いた単一例からのパスベース画像生成
- Authors: Sabine Wieluch and Friedhelm Schwenker
- Abstract要約: 本稿では、トランスフォーマーニューラルネットワークを用いて、単一経路に基づく例画像から生成モデルを学ぶ方法を示す。
本稿では,サンプル画像からデータセットを生成する方法と,モデルを用いて大量の画像を生成する方法を示す。
- 参考スコア(独自算出の注目度): 0.4061135251278187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper demonstrates how a Transformer Neural Network can be used to learn
a Generative Model from a single path-based example image. We further show how
a data set can be generated from the example image and how the model can be
used to generate a large set of deviated images, which still represent the
original image's style and concept.
- Abstract(参考訳): 本稿では、トランスフォーマーニューラルネットワークを用いて、単一経路に基づく例画像から生成モデルを学習する方法を示す。
さらに,データセットをサンプル画像から生成する方法と,そのモデルを用いて,元の画像のスタイルや概念を表現できるような,大きな逸脱した画像群を生成する方法を示す。
関連論文リスト
- Interpretable Image Classification with Adaptive Prototype-based Vision Transformers [37.62530032165594]
本稿では,ディープラーニングとケースベース推論を組み合わせた画像分類手法であるProtoViTを提案する。
我々のモデルは、視覚変換器(ViT)のバックボーンをプロトタイプベースモデルに統合し、空間的に変形したプロトタイプを提供する。
実験の結果,本モデルでは既存のプロトタイプモデルよりも高い性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-10-28T04:33:28Z) - Conditional Diffusion on Web-Scale Image Pairs leads to Diverse Image Variations [32.892042877725125]
現在の画像変化技術では、同じ画像に条件付けされた入力画像の再構成にテキスト・ツー・イメージ・モデルを適用する。
凍結した埋め込み画像から入力画像の再構成を訓練した拡散モデルにより,小さなバリエーションで画像の再構成が可能であることを示す。
本稿では,画像ペアの集合を用いて画像の変動を生成するための事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T17:58:03Z) - Unsupervised Compositional Concepts Discovery with Text-to-Image
Generative Models [80.75258849913574]
本稿では、異なる画像の集合を考えると、各画像を表す生成概念を発見できるかという逆問題を考える。
本稿では,画像の集合から生成概念を抽出し,絵画やオブジェクト,キッチンシーンからの照明から異なる美術スタイルを分離し,イメージネット画像から得られる画像クラスを発見するための教師なしアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-08T17:02:15Z) - Diffusion Self-Guidance for Controllable Image Generation [106.59989386924136]
自己誘導(Self-guidance)は、拡散モデルの内部表現を導くことによって、生成された画像に対するより深い制御を提供する。
課題の画像操作を行うために、簡単なプロパティセットをいかに構成できるかを示す。
また,実画像の編集に自己指導が有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T17:59:56Z) - Meta Internal Learning [88.68276505511922]
単一画像生成のための内部学習は、単一の画像に基づいて新しい画像を生成するようにジェネレータを訓練するフレームワークである。
本稿では,サンプル画像の内部統計をより効果的にモデル化するために,画像集合のトレーニングを可能にするメタラーニング手法を提案する。
以上の結果から, 得られたモデルは, 多数の共通画像アプリケーションにおいて, シングルイメージのGANと同程度に適していることがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:27:38Z) - Towards a Neural Graphics Pipeline for Controllable Image Generation [96.11791992084551]
ニューラルグラフパイプライン(NGP)は,ニューラルネットワークと従来の画像形成モデルを組み合わせたハイブリッド生成モデルである。
NGPは、画像を解釈可能な外観特徴マップの集合に分解し、制御可能な画像生成のための直接制御ハンドルを明らかにする。
単目的シーンの制御可能な画像生成におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T14:22:54Z) - Decoupling Global and Local Representations via Invertible Generative
Flows [47.366299240738094]
標準画像ベンチマークによる実験結果から, 密度推定, 画像生成, 教師なし表現学習の観点から, モデルの有効性が示された。
この研究は、確率に基づく目的を持つ生成モデルが疎結合表現を学習でき、明示的な監督を必要としないことを示した。
論文 参考訳(メタデータ) (2020-04-12T03:18:13Z) - Semantic Image Manipulation Using Scene Graphs [105.03614132953285]
本稿では,星座変更や画像編集を直接監督する必要のないシーングラフネットワークを提案する。
これにより、追加のアノテーションを使わずに、既存の実世界のデータセットからシステムをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-04-07T20:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。