論文の概要: Prediction of number of cases expected and estimation of the final size
of coronavirus epidemic in India using the logistic model and genetic
algorithm
- arxiv url: http://arxiv.org/abs/2003.12017v1
- Date: Thu, 26 Mar 2020 16:32:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 22:16:35.805981
- Title: Prediction of number of cases expected and estimation of the final size
of coronavirus epidemic in India using the logistic model and genetic
algorithm
- Title(参考訳): ロジスティックモデルと遺伝的アルゴリズムを用いたインドにおける新型コロナウイルス流行の予測と最終規模の推定
- Authors: Ganesh Kumar M, Soman K.P, Gopalakrishnan E.A, Vijay Krishna Menon,
Sowmya V
- Abstract要約: インドでは今後,新型コロナウイルス感染者数を予測するために,ロジスティック成長回帰モデルと遺伝的アルゴリズムを適用した。
また、インドで発生した新型コロナウイルスの流行の最終規模と最盛期を推定した。
- 参考スコア(独自算出の注目度): 2.0964223656725176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we have applied the logistic growth regression model and
genetic algorithm to predict the number of coronavirus infected cases that can
be expected in upcoming days in India and also estimated the final size and its
peak time of the coronavirus epidemic in India.
- Abstract(参考訳): 本稿では,ロジスティック・グロース・レグレッション・モデルと遺伝的アルゴリズムを用いて,今後インドで予想される新型コロナウイルス感染者数を予測するとともに,インドにおける新型コロナウイルス流行の最終規模と最盛期を推定した。
関連論文リスト
- Modeling Epidemic Spread: A Gaussian Process Regression Approach [0.7374726900469741]
本稿では,Gaussian Process regression(GPR)に基づく新しいデータ駆動手法を提案する。
本稿では、GPRを用いて、イギリスで新型コロナウイルス流行時に収集された実世界感染データを用いて、感染拡大をモデル化し、予測する例を示す。
論文 参考訳(メタデータ) (2023-12-14T22:45:01Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Forecasting COVID- 19 cases using Statistical Models and Ontology-based
Semantic Modelling: A real time data analytics approach [1.8008011356310047]
本研究では,SARIMA や FBProphet などの統計時系列モデルを用いて,COVID-19 の日常的,回復的,死亡例を正確にモニタリングする予測モデルを開発した。
COVID-19 Ontologyを開発し、設計したOntology上でSPARQLクエリを使用してさまざまなクエリを実行する。
個別の症例予測では、約497件のサンプルが検査され、5種類の新型コロナウイルスクラスに分類されている。
論文 参考訳(メタデータ) (2022-06-06T11:58:11Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
ポルトガルは世界最大の発生率を持つ国であり、人口10万人当たりの14日間の発生率が1000を超える。
その重要性にもかかわらず、covid-19の地理空間的進化の正確な予測は依然として課題である。
論文 参考訳(メタデータ) (2021-05-06T15:24:00Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
卓越した計算モデルと数学的モデルは、感染の拡散の複雑さのために信頼性が低い。
リカレントニューラルネットワークのようなディープラーニングモデルは、時間的シーケンスをモデル化するのに適している。
感染率の面では、新型コロナウイルスのホットポットを持つ州を選択し、感染の有無やピークに達した州と比較する。
以上の結果から,他の国や地域での手法の適用を動機づける長期予測が期待されていることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T09:19:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
我々は,スーパーマーケットの小売データを,センチネルバスケットの識別を通じてインフルエンザの代替信号とみなす。
SVR(Support Vector Regression)モデルを用いて、季節性インフルエンザ発生の予測を行います。
論文 参考訳(メタデータ) (2020-12-08T16:30:43Z) - A self-supervised neural-analytic method to predict the evolution of
COVID-19 in Romania [10.760851506126105]
我々は、感染症の古典的な確立されたモデルであるSEIRの改良版を使用している。
本稿では,修正SEIRモデルパラメータの正しいセットを推定するために,深層畳み込みネットワークを訓練するための自己教師型アプローチを提案する。
ルーマニアの死亡率が約0.3%である場合、楽観的な結果が得られ、我々のモデルが今後最大3週間の日々の死亡数を正確に予測できることを示した。
論文 参考訳(メタデータ) (2020-06-23T12:00:04Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
本稿では,無症候性および死亡個体群に富んだSIR疫学モデルが,流行の進展を確実に予測できるかどうかを論じる。
粒子群最適化(PSO)に基づく機械学習手法を提案する。
予測における散乱の分析は、モデル予測がトレーニングに使用されるデータセットのサイズに非常に敏感であり、さらにデータが必要であることを示している。
論文 参考訳(メタデータ) (2020-04-14T08:42:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。