論文の概要: Dynamic Region-Aware Convolution
- arxiv url: http://arxiv.org/abs/2003.12243v3
- Date: Mon, 15 Mar 2021 16:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 05:02:13.638909
- Title: Dynamic Region-Aware Convolution
- Title(参考訳): 動的領域認識畳み込み
- Authors: Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, Jian Sun
- Abstract要約: 本稿では,複数のフィルタを対応する空間領域に自動的に割り当てる動的領域認識畳み込み(DRConv)を提案する。
ImageNet分類において、DRConvベースのShuffleNetV2-0.5xは6.3%の相対的な改善と46M乗算加算レベルで67.1%の最先端性能を達成する。
- 参考スコア(独自算出の注目度): 85.20099799084026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new convolution called Dynamic Region-Aware Convolution
(DRConv), which can automatically assign multiple filters to corresponding
spatial regions where features have similar representation. In this way, DRConv
outperforms standard convolution in modeling semantic variations. Standard
convolutional layer can increase the number of filers to extract more visual
elements but results in high computational cost. More gracefully, our DRConv
transfers the increasing channel-wise filters to spatial dimension with
learnable instructor, which not only improve representation ability of
convolution, but also maintains computational cost and the
translation-invariance as standard convolution dose. DRConv is an effective and
elegant method for handling complex and variable spatial information
distribution. It can substitute standard convolution in any existing networks
for its plug-and-play property, especially to power convolution layers in
efficient networks. We evaluate DRConv on a wide range of models (MobileNet
series, ShuffleNetV2, etc.) and tasks (Classification, Face Recognition,
Detection and Segmentation). On ImageNet classification, DRConv-based
ShuffleNetV2-0.5x achieves state-of-the-art performance of 67.1% at 46M
multiply-adds level with 6.3% relative improvement.
- Abstract(参考訳): 本稿では,動的領域認識畳み込み(DRConv)と呼ばれる新しい畳み込みを提案する。
このように、DRConvはセマンティックなバリエーションのモデリングにおいて標準的な畳み込みよりも優れています。
標準畳み込み層は、より視覚的な要素を抽出するためにファイル数を増やすが、計算コストは高い。
より優雅に、我々のdrconvは、増大するチャンネルワイズフィルタを学習可能なインストラクターで空間次元に転送し、畳み込みの表現能力を向上させるだけでなく、標準畳み込み線量として計算コストと翻訳不変性を維持する。
DRConvは複雑な空間情報の分散を扱うための効率的かつエレガントな手法である。
既存のネットワークの標準的な畳み込みを、特に効率的なネットワークにおける電力畳み込み層に置き換えることができる。
我々は,幅広いモデル(MobileNetシリーズ,ShuffleNetV2など)とタスク(識別,顔認識,検出,セグメンテーション)でDRConvを評価する。
ImageNet分類において、DRConvベースのShuffleNetV2-0.5xは6.3%の相対的な改善と46M乗算加算レベルで67.1%の最先端性能を達成する。
関連論文リスト
- DGCNet: An Efficient 3D-Densenet based on Dynamic Group Convolution for
Hyperspectral Remote Sensing Image Classification [22.025733502296035]
改良された3D-Densenetモデルに基づく軽量モデルを導入し,DGCNetを設計する。
複数のグループは、入力画像の異なる視覚的および意味的な特徴をキャプチャし、畳み込みニューラルネットワーク(CNN)がリッチな特徴を学習できるようにする。
推論速度と精度が向上し、IN、Pavia、KSCデータセット上での優れたパフォーマンスが向上した。
論文 参考訳(メタデータ) (2023-07-13T10:19:48Z) - Omni-Dimensional Dynamic Convolution [25.78940854339179]
各畳み込み層で単一の静的畳み込みカーネルを学習することは、現代の畳み込みニューラルネットワーク(CNN)の共通の訓練パラダイムである。
動的畳み込みの最近の研究は、入力依存の注意を重み付けした$n$の畳み込みカーネルの線形結合を学習することで、軽量CNNの精度を大幅に向上させることができることを示している。
より一般化されているがエレガントな動的畳み込み設計であるOmni-dimensional Dynamic Convolution (ODConv)を提案する。
論文 参考訳(メタデータ) (2022-09-16T14:05:38Z) - TVConv: Efficient Translation Variant Convolution for Layout-aware
Visual Processing [10.996162201540695]
レイアウト認識型視覚処理のための効率的な翻訳変種畳み込み(TVConv)を開発した。
TVConvは畳み込みの効率を大幅に改善し、様々なネットワークアーキテクチャに簡単に接続できる。
論文 参考訳(メタデータ) (2022-03-20T08:29:06Z) - OneDConv: Generalized Convolution For Transform-Invariant Representation [76.15687106423859]
一般化された一次元畳み込み作用素(OneDConv)を提案する。
計算的かつパラメトリック的に効率的な方法で入力特徴に基づいて、畳み込みカーネルを動的に変換する。
一般的な画像のパフォーマンスを犠牲にすることなく、畳み込みの堅牢性と一般化を改善する。
論文 参考訳(メタデータ) (2022-01-15T07:44:44Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - Involution: Inverting the Inherence of Convolution for Visual
Recognition [72.88582255910835]
本稿では,畳み込みの原理を逆転させることにより,深層ニューラルネットワークの新たな原子操作を提案する。
提案する畳み込み演算子は、視覚認識のための新しい世代のニューラルネットワークを構築するための基本ブロックとして利用することができる。
当社のInvolutionベースのモデルは、ResNet-50を使用した畳み込みベースラインのパフォーマンスを最大1.6%の精度、2.5%と2.4%のバウンディングボックスAP、4.7%は絶対にIoUを意味します。
論文 参考訳(メタデータ) (2021-03-10T18:40:46Z) - Do End-to-end Stereo Algorithms Under-utilize Information? [7.538482310185133]
本稿では,2次元および3次元の畳み込みネットワークに適応フィルタリングと半グローバルアグリゲーションを組み込むことによって,エンドツーエンドのステレオマッチングを実現する方法を示す。
改善は、画像からのRGB情報を信号として利用し、マッチングプロセスを動的にガイドすることによる。
論文 参考訳(メタデータ) (2020-10-14T18:32:39Z) - PSConv: Squeezing Feature Pyramid into One Compact Poly-Scale
Convolutional Layer [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、しばしばスケールに敏感である。
我々は、この後悔を、より細かい粒度でマルチスケールの機能を利用して埋める。
提案した畳み込み演算は、PSConv(Poly-Scale Convolution)と呼ばれ、拡張率のスペクトルを混合する。
論文 参考訳(メタデータ) (2020-07-13T05:14:11Z) - Dynamic Group Convolution for Accelerating Convolutional Neural Networks [23.644124360336754]
本稿では,各グループ内で接続すべき入力チャネルのどの部分を適応的に選択する動的グループ畳み込み(DGC)を提案する。
複数のグループは、入力画像ごとに、豊富で相補的な視覚的/意味的特徴を適応的にキャプチャすることができる。
DGCは元のネットワーク構造を保持し、従来のグループ畳み込みと同様の計算効率を持つ。
論文 参考訳(メタデータ) (2020-07-08T16:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。