End-to-end Autonomous Driving Perception with Sequential Latent
Representation Learning
- URL: http://arxiv.org/abs/2003.12464v2
- Date: Fri, 9 Oct 2020 03:40:42 GMT
- Title: End-to-end Autonomous Driving Perception with Sequential Latent
Representation Learning
- Authors: Jianyu Chen, Zhuo Xu and Masayoshi Tomizuka
- Abstract summary: An end-to-end approach might clean up the system and avoid huge efforts of human engineering.
A latent space is introduced to capture all relevant features useful for perception, which is learned through sequential latent representation learning.
The learned end-to-end perception model is able to solve the detection, tracking, localization and mapping problems altogether with only minimum human engineering efforts.
- Score: 34.61415516112297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current autonomous driving systems are composed of a perception system and a
decision system. Both of them are divided into multiple subsystems built up
with lots of human heuristics. An end-to-end approach might clean up the system
and avoid huge efforts of human engineering, as well as obtain better
performance with increasing data and computation resources. Compared to the
decision system, the perception system is more suitable to be designed in an
end-to-end framework, since it does not require online driving exploration. In
this paper, we propose a novel end-to-end approach for autonomous driving
perception. A latent space is introduced to capture all relevant features
useful for perception, which is learned through sequential latent
representation learning. The learned end-to-end perception model is able to
solve the detection, tracking, localization and mapping problems altogether
with only minimum human engineering efforts and without storing any maps
online. The proposed method is evaluated in a realistic urban driving
simulator, with both camera image and lidar point cloud as sensor inputs. The
codes and videos of this work are available at our github repo and project
website.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
We present a Kalman filter augmented recurrent neural network architecture to learn the latent representation of the traffic flow using front camera images only.
Results show that incorporating an explicit model of the vehicle (states estimated using Kalman filtering) in the end-to-end learning significantly increases performance.
arXiv Detail & Related papers (2023-05-24T02:27:34Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - An Intelligent Self-driving Truck System For Highway Transportation [81.12838700312308]
In this paper, we introduce an intelligent self-driving truck system.
Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment.
We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap.
arXiv Detail & Related papers (2021-12-31T04:54:13Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - PLOP: Probabilistic poLynomial Objects trajectory Planning for
autonomous driving [8.105493956485583]
We use a conditional imitation learning algorithm to predict trajectories for ego vehicle and its neighbors.
Our approach is computationally efficient and relies only on on-board sensors.
We evaluate our method offline on the publicly available dataset nuScenes.
arXiv Detail & Related papers (2020-03-09T16:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.