Unruh effect for detectors in superposition of accelerations
- URL: http://arxiv.org/abs/2003.12603v4
- Date: Wed, 22 Jul 2020 10:37:05 GMT
- Title: Unruh effect for detectors in superposition of accelerations
- Authors: Luis C. Barbado, Esteban Castro-Ruiz, Luca Apadula and \v{C}aslav
Brukner
- Abstract summary: The Unruhh effect is the phenomenon that accelerated observers detect particles even when inertial observers experience the vacuum state.
Here we consider the Unruhh effect for a detector that excitation a quantum supertime of different trajectories in Minkowski space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Unruh effect is the phenomenon that accelerated observers detect
particles even when inertial observers experience the vacuum state. In
particular, uniformly accelerated observers are predicted to measure thermal
radiation that is proportional to the acceleration. Here we consider the Unruh
effect for a detector that follows a quantum superposition of different
accelerated trajectories in Minkowski spacetime. More precisely, we analyse the
excitations of a pointlike multilevel particle detector coupled to a massless
real scalar field and moving in the superposition of accelerated trajectories.
We find that the state of the detector excitations is, in general, not a mere
(convex) mixture of the thermal spectrum characteristics of the Unruh effect
for each trajectory with well-defined acceleration separately. Rather, for
certain trajectories and excitation levels, and upon the measurement of the
trajectory state, the state of the detector excitations features in addition
off-diagonal terms. The off-diagonal terms of these "superpositions of thermal
states" are related to the distinguishability of the different possible states
in which the field is left after its interaction with detector's internal
degrees of the freedom.
Related papers
- A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - Probing long-range properties of vacuum altered by uniformly
accelerating two spatially separated Unruh-DeWitt detectors [0.0]
Long-range properties of a quantum vacuum may be probed by distributing matter over a large spatial volume.
We study two uniformly accelerated Unruh-DeWitt detectors which are spatially separated.
When the inter-detector separation is much larger than the thermal wavelength of the Unruh thermal bath, the inter-detector interaction displays a completely new behavior.
arXiv Detail & Related papers (2022-05-23T07:05:41Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - The Unruh effect in slow motion [0.0]
We show in what regimes the probe forgets' that it is traversing cavities and thermalizes to a temperature proportional to its acceleration.
We analyze in detail how this thermalization relates to the renowned Unruh effect.
We propose an experimental testbed for the direct detection of the Unruh effect at relatively low probe speeds and accelerations.
arXiv Detail & Related papers (2020-11-16T19:09:39Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Uniformly accelerated quantum counting detector in Minkowski and Fulling
vacuum states [0.0]
We discuss the process of measurements by a detector in an uniformly accelerated rectilinear motion, interacting linearly with a massive scalar field.
For the massless case, we obtain that the transition probability rate of the detector in the far future is tantamount to the analogous quantity for the detector at rest in a non-inertial reference frame.
arXiv Detail & Related papers (2020-09-08T19:36:19Z) - Field assisted extraction and swelling of quantum coherence for moving
Unruh-DeWitt detectors [0.0]
We study the effects of motion for an Unruh-DeWitt detector, modeled as a two-level system, on the amount of coherence extracted.
We observe that compared to a detector at rest, for certain values of the initial energy of the field and the interaction duration, the amount is larger for both a detector moving with a constant speed or uniform acceleration.
arXiv Detail & Related papers (2020-06-24T17:48:41Z) - Unruh-deWitt detectors in quantum superpositions of trajectories [0.0]
We extend the standard treatment of an Unruh-deWitt detector to include the detector travelling in a quantum superposition of classical trajectories.
We derive perturbative expressions for the final state of the detector, and show that it depends on field correlation functions evaluated locally.
We show that in general, such a detector does not thermalise even if the superposed paths would individually yield the same thermal state.
arXiv Detail & Related papers (2020-03-28T12:04:42Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.