Field assisted extraction and swelling of quantum coherence for moving
Unruh-DeWitt detectors
- URL: http://arxiv.org/abs/2006.13917v1
- Date: Wed, 24 Jun 2020 17:48:41 GMT
- Title: Field assisted extraction and swelling of quantum coherence for moving
Unruh-DeWitt detectors
- Authors: Nikolaos K. Kollas, Dimitris Moustos, Kostas Blekos
- Abstract summary: We study the effects of motion for an Unruh-DeWitt detector, modeled as a two-level system, on the amount of coherence extracted.
We observe that compared to a detector at rest, for certain values of the initial energy of the field and the interaction duration, the amount is larger for both a detector moving with a constant speed or uniform acceleration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the effects of motion for an Unruh-DeWitt detector, modeled as a
two-level system, on the amount of coherence extracted, when it interacts with
a massless scalar coherent field in 1+1 Minkowski spacetime. We observe that
compared to a detector at rest, for certain values of the initial energy of the
field and the interaction duration, the amount is larger for both a detector
moving with a constant speed or uniform acceleration. This "swelling" of
coherence, which becomes more intense for increasing values of velocity or
acceleration, is mostly observed for short durations, when the energy of the
field is larger compared to that of the detector, and for longer durations but
smaller field energies. As a consequence, the rate at which coherence is lost,
is sometimes slower for a moving detector than for a detector at rest.
Related papers
- Field mixing in a thermal medium: A quantum master equation approach [10.985518406776766]
We study the nonequilibrium dynamics of the indirect mixing of two (pseudo-)scalar fields induced by their couplings to common decay channels in a medium.
arXiv Detail & Related papers (2024-08-16T00:02:08Z) - Effective field theory of particle mixing [10.985518406776766]
We study emphindirect mixing of two fields induced by their couplings to a common decay channel in a medium.
The analysis reveals subtle caveats in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2023-10-26T00:23:34Z) - Entanglement Harvesting of Inertially Moving Unruh-DeWitt Detectors in
Minkowski Spacetime [0.0]
We investigate the effects of relative motion on entanglement harvesting by considering a pair of Unruh-Dewitt detectors moving at arbitrary, but independent, velocities.
We find that the Negativity is a function of the relative velocity of the detectors, as well as their energy gaps and minimal separation.
arXiv Detail & Related papers (2022-05-29T19:09:05Z) - Probing long-range properties of vacuum altered by uniformly
accelerating two spatially separated Unruh-DeWitt detectors [0.0]
Long-range properties of a quantum vacuum may be probed by distributing matter over a large spatial volume.
We study two uniformly accelerated Unruh-DeWitt detectors which are spatially separated.
When the inter-detector separation is much larger than the thermal wavelength of the Unruh thermal bath, the inter-detector interaction displays a completely new behavior.
arXiv Detail & Related papers (2022-05-23T07:05:41Z) - Assisted harvesting and catalysis of coherence from scalar fields [0.0]
We show that it is possible to harvest quantum resources other than entanglement from a coherent field.
For a detector moving at a constant velocity and with a mean radius of the same order as its transition wavelength, we observe that, for relativistic speeds, coherence swelling effects are present.
arXiv Detail & Related papers (2021-03-16T16:06:18Z) - Equilibrium and Nonequilibrium Quantum Correlations Between Two
Accelerated Detectors [9.793615002494237]
We quantify the quantum correlations between two accelerated detectors coupled to a scalar field in a cavity.
We examine the similarities and differences for quantum correlations regarding either temperature or acceleration.
arXiv Detail & Related papers (2020-10-16T07:25:07Z) - Uniformly accelerated quantum counting detector in Minkowski and Fulling
vacuum states [0.0]
We discuss the process of measurements by a detector in an uniformly accelerated rectilinear motion, interacting linearly with a massive scalar field.
For the massless case, we obtain that the transition probability rate of the detector in the far future is tantamount to the analogous quantity for the detector at rest in a non-inertial reference frame.
arXiv Detail & Related papers (2020-09-08T19:36:19Z) - Ultrafast viscosity measurement with ballistic optical tweezers [55.41644538483948]
Noninvasive viscosity measurements require integration times of seconds.
We demonstrate a four orders-of-magnitude improvement in speed, down to twenty microseconds.
We achieve this using the instantaneous velocity of a trapped particle in an optical tweezer.
arXiv Detail & Related papers (2020-06-29T00:09:40Z) - Unruh effect for detectors in superposition of accelerations [0.0]
The Unruhh effect is the phenomenon that accelerated observers detect particles even when inertial observers experience the vacuum state.
Here we consider the Unruhh effect for a detector that excitation a quantum supertime of different trajectories in Minkowski space.
arXiv Detail & Related papers (2020-03-27T19:02:34Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.