Random Machines Regression Approach: an ensemble support vector
regression model with free kernel choice
- URL: http://arxiv.org/abs/2003.12643v1
- Date: Fri, 27 Mar 2020 21:30:59 GMT
- Title: Random Machines Regression Approach: an ensemble support vector
regression model with free kernel choice
- Authors: Anderson Ara, Mateus Maia, Samuel Mac\^edo and Francisco Louzada
- Abstract summary: In this article we propose a procedure to use the bagged-weighted support vector model to regression problems.
The results exhibited a good performance of Regression Random Machines through lower generalization error without needing to choose the best kernel function during tuning process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques always aim to reduce the generalized prediction
error. In order to reduce it, ensemble methods present a good approach
combining several models that results in a greater forecasting capacity. The
Random Machines already have been demonstrated as strong technique, i.e: high
predictive power, to classification tasks, in this article we propose an
procedure to use the bagged-weighted support vector model to regression
problems. Simulation studies were realized over artificial datasets, and over
real data benchmarks. The results exhibited a good performance of Regression
Random Machines through lower generalization error without needing to choose
the best kernel function during tuning process.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach [8.875278412741695]
Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data.
We develop an algorithm that achieves near-instantaneous unlearning as it only requires a vector addition operation.
arXiv Detail & Related papers (2024-04-02T07:54:18Z) - Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
We consider meta-learning within the framework of high-dimensional random-effects linear models.
We show the precise behavior of the predictive risk for a new test task when the data dimension grows proportionally to the number of samples per task.
We propose and analyze an estimator inverse random regression coefficients based on data from the training tasks.
arXiv Detail & Related papers (2024-03-27T21:18:43Z) - Model Agnostic Explainable Selective Regression via Uncertainty
Estimation [15.331332191290727]
This paper presents a novel approach to selective regression that utilizes model-agnostic non-parametric uncertainty estimation.
Our proposed framework showcases superior performance compared to state-of-the-art selective regressors.
We implement our selective regression method in the open-source Python package doubt and release the code used to reproduce our experiments.
arXiv Detail & Related papers (2023-11-15T17:40:48Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Latent Gaussian Model Boosting [0.0]
Tree-boosting shows excellent predictive accuracy on many data sets.
We obtain increased predictive accuracy compared to existing approaches in both simulated and real-world data experiments.
arXiv Detail & Related papers (2021-05-19T07:36:30Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Gaussian Process Boosting [13.162429430481982]
We introduce a novel way to combine boosting with Gaussian process and mixed effects models.
We obtain increased prediction accuracy compared to existing approaches on simulated and real-world data sets.
arXiv Detail & Related papers (2020-04-06T13:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.