Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach
- URL: http://arxiv.org/abs/2404.01712v3
- Date: Mon, 3 Jun 2024 15:35:12 GMT
- Title: Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach
- Authors: Xinbao Qiao, Meng Zhang, Ming Tang, Ermin Wei,
- Abstract summary: Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data.
We develop an algorithm that achieves near-instantaneous unlearning as it only requires a vector addition operation.
- Score: 8.875278412741695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data. Recent advances suggest precomputing and storing statistics extracted from second-order information and implementing unlearning through Newton-style updates. However, the theoretical analysis of these works often depends on restrictive assumptions of convexity and smoothness, and those mentioned operations on Hessian matrix are extremely costly. As a result, applying these works to high-dimensional models becomes challenging. In this paper, we propose an efficient Hessian-free certified unlearning. We propose to maintain a statistical vector for each data, computed through affine stochastic recursion approximation of the difference between retrained and learned models. Our analysis does not involve inverting Hessian and thus can be extended to non-convex non-smooth objectives. Under same assumptions, we demonstrate advancements of proposed method beyond the state-of-the-art theoretical studies, in terms of generalization, unlearning guarantee, deletion capacity, and computation/storage complexity, and we show that the unlearned model of our proposed approach is close to or same as the retrained model. Based on the strategy of recollecting statistics for forgetting data, we develop an algorithm that achieves near-instantaneous unlearning as it only requires a vector addition operation. Experiments demonstrate that the proposed scheme surpasses existing results by orders of magnitude in terms of time/storage costs, while also enhancing accuracy.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions [11.955062839855334]
Machine unlearning algorithms aim to efficiently data from a model without it from scratch, in order to enforce data privacy, remove corrupted or outdated data, or respect a user's right to forgotten"
Our algorithm is black-box, in that it be directly applied to models with vanilla gradient descent with no prior consideration of unlearning.
arXiv Detail & Related papers (2024-09-15T15:58:08Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Regression-based projection for learning Mori-Zwanzig operators [0.0]
We propose to adopt statistical regression as the projection operator to enable data-driven learning of the operators in the Mori-Zwanzig formalism.
We show that the choice of linear regression results in a recently proposed data-driven learning algorithm based on Mori's projection operator.
arXiv Detail & Related papers (2022-05-10T19:35:47Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
We investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection.
We propose a novel and generic method that can be applied to any data type and distance function.
arXiv Detail & Related papers (2020-02-15T20:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.