A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching
- URL: http://arxiv.org/abs/2003.13114v1
- Date: Sun, 29 Mar 2020 19:08:03 GMT
- Title: A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching
- Authors: Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, Mohamed
Sarwat
- Abstract summary: In this paper, we build a unified active learning benchmark framework for EM.
The goal of the framework is to enable concrete guidelines for practitioners as to what active learning combinations will work well for EM.
Our framework also includes novel optimizations that improve the quality of the learned model by roughly 9% in terms of F1-score and reduce example selection latencies by up to 10x without affecting the quality of the model.
- Score: 17.064993611446898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity Matching (EM) is a core data cleaning task, aiming to identify
different mentions of the same real-world entity. Active learning is one way to
address the challenge of scarce labeled data in practice, by dynamically
collecting the necessary examples to be labeled by an Oracle and refining the
learned model (classifier) upon them. In this paper, we build a unified active
learning benchmark framework for EM that allows users to easily combine
different learning algorithms with applicable example selection algorithms. The
goal of the framework is to enable concrete guidelines for practitioners as to
what active learning combinations will work well for EM. Towards this, we
perform comprehensive experiments on publicly available EM datasets from
product and publication domains to evaluate active learning methods, using a
variety of metrics including EM quality, #labels and example selection
latencies. Our most surprising result finds that active learning with fewer
labels can learn a classifier of comparable quality as supervised learning. In
fact, for several of the datasets, we show that there is an active learning
combination that beats the state-of-the-art supervised learning result. Our
framework also includes novel optimizations that improve the quality of the
learned model by roughly 9% in terms of F1-score and reduce example selection
latencies by up to 10x without affecting the quality of the model.
Related papers
- Learning from the Best: Active Learning for Wireless Communications [9.523381807291049]
Active learning algorithms identify the most critical and informative samples in an unlabeled dataset and label only those samples, instead of the complete set.
We present a case study of deep learning-based mmWave beam selection, where labeling is performed by a compute-intensive algorithm based on exhaustive search.
Our results show that using an active learning algorithm for class-imbalanced datasets can reduce labeling overhead by up to 50% for this dataset.
arXiv Detail & Related papers (2024-01-23T12:21:57Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Active Learning with Combinatorial Coverage [0.0]
Active learning is a practical field of machine learning that automates the process of selecting which data to label.
Current methods are effective in reducing the burden of data labeling but are heavily model-reliant.
This has led to the inability of sampled data to be transferred to new models as well as issues with sampling bias.
We propose active learning methods utilizing coverage to overcome these issues.
arXiv Detail & Related papers (2023-02-28T13:43:23Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability.
We propose CEIL (Compositional Exemplars for In-context Learning) to model the interaction between the given input and in-context examples.
We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing.
arXiv Detail & Related papers (2023-02-11T14:02:08Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Active metric learning and classification using similarity queries [21.589707834542338]
We show that a novel unified query framework can be applied to any problem in which a key component is learning a representation of the data that reflects similarity.
We demonstrate the effectiveness of the proposed strategy on two tasks -- active metric learning and active classification.
arXiv Detail & Related papers (2022-02-04T03:34:29Z) - Rebuilding Trust in Active Learning with Actionable Metrics [77.99796068970569]
Active Learning (AL) is an active domain of research, but is seldom used in the industry despite the pressing needs.
This is in part due to a misalignment of objectives, while research strives at getting the best results on selected datasets.
We present various actionable metrics to help rebuild trust of industrial practitioners in Active Learning.
arXiv Detail & Related papers (2020-12-18T09:34:59Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
We present a self-training framework, SLADE, to improve retrieval performance by leveraging additional unlabeled data.
We first train a teacher model on the labeled data and use it to generate pseudo labels for the unlabeled data.
We then train a student model on both labels and pseudo labels to generate final feature embeddings.
arXiv Detail & Related papers (2020-11-20T08:26:10Z) - ALdataset: a benchmark for pool-based active learning [1.9308522511657449]
Active learning (AL) is a subfield of machine learning (ML) in which a learning algorithm could achieve good accuracy with less training samples by interactively querying a user/oracle to label new data points.
Pool-based AL is well-motivated in many ML tasks, where unlabeled data is abundant, but their labels are hard to obtain.
We present experiment results for various active learning strategies, both recently proposed and classic highly-cited methods, and draw insights from the results.
arXiv Detail & Related papers (2020-10-16T04:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.