Learning from the Best: Active Learning for Wireless Communications
- URL: http://arxiv.org/abs/2402.04896v1
- Date: Tue, 23 Jan 2024 12:21:57 GMT
- Title: Learning from the Best: Active Learning for Wireless Communications
- Authors: Nasim Soltani, Jifan Zhang, Batool Salehi, Debashri Roy, Robert Nowak,
Kaushik Chowdhury
- Abstract summary: Active learning algorithms identify the most critical and informative samples in an unlabeled dataset and label only those samples, instead of the complete set.
We present a case study of deep learning-based mmWave beam selection, where labeling is performed by a compute-intensive algorithm based on exhaustive search.
Our results show that using an active learning algorithm for class-imbalanced datasets can reduce labeling overhead by up to 50% for this dataset.
- Score: 9.523381807291049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting an over-the-air wireless communications training dataset for deep
learning-based communication tasks is relatively simple. However, labeling the
dataset requires expert involvement and domain knowledge, may involve private
intellectual properties, and is often computationally and financially
expensive. Active learning is an emerging area of research in machine learning
that aims to reduce the labeling overhead without accuracy degradation. Active
learning algorithms identify the most critical and informative samples in an
unlabeled dataset and label only those samples, instead of the complete set. In
this paper, we introduce active learning for deep learning applications in
wireless communications, and present its different categories. We present a
case study of deep learning-based mmWave beam selection, where labeling is
performed by a compute-intensive algorithm based on exhaustive search. We
evaluate the performance of different active learning algorithms on a publicly
available multi-modal dataset with different modalities including image and
LiDAR. Our results show that using an active learning algorithm for
class-imbalanced datasets can reduce labeling overhead by up to 50% for this
dataset while maintaining the same accuracy as classical training.
Related papers
- Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
A model trained on one data modality often fails when tested with a different modality.
We introduce a continual learning algorithm capable of incrementally learning different data modalities.
We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset.
arXiv Detail & Related papers (2024-09-20T09:53:27Z) - Algorithm Selection for Deep Active Learning with Imbalanced Datasets [11.902019233549474]
Active learning aims to reduce the number of labeled examples needed to train deep networks.
It is difficult to know in advance which active learning strategy will perform well or best in a given application.
We propose the first adaptive algorithm selection strategy for deep active learning.
arXiv Detail & Related papers (2023-02-14T19:59:49Z) - Semantic Segmentation with Active Semi-Supervised Representation
Learning [23.79742108127707]
We train an effective semantic segmentation algorithm with significantly lesser labeled data.
We extend the prior state-of-the-art S4AL algorithm by replacing its mean teacher approach for semi-supervised learning with a self-training approach.
We evaluate our method on CamVid and CityScapes datasets, the de-facto standards for active learning for semantic segmentation.
arXiv Detail & Related papers (2022-10-16T00:21:43Z) - Is margin all you need? An extensive empirical study of active learning
on tabular data [66.18464006872345]
We analyze the performance of a variety of active learning algorithms on 69 real-world datasets from the OpenML-CC18 benchmark.
Surprisingly, we find that the classical margin sampling technique matches or outperforms all others, including current state-of-art.
arXiv Detail & Related papers (2022-10-07T21:18:24Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Dominant Set-based Active Learning for Text Classification and its
Application to Online Social Media [0.0]
We present a novel pool-based active learning method for the training of large unlabeled corpus with minimum annotation cost.
Our proposed method does not have any parameters to be tuned, making it dataset-independent.
Our method achieves a higher performance in comparison to the state-of-the-art active learning strategies.
arXiv Detail & Related papers (2022-01-28T19:19:03Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
We present a new symbolic music dataset that will help researchers demonstrate the efficacy of their algorithms on diverse domains.
This will also provide a means for evaluating algorithms specifically designed for music.
The dataset is large enough (approx. 1.3 million data points) to train and test deep networks for disentanglement learning.
arXiv Detail & Related papers (2020-07-29T19:20:07Z) - Similarity Search for Efficient Active Learning and Search of Rare
Concepts [78.5475382904847]
We improve the computational efficiency of active learning and search methods by restricting the candidate pool for labeling to the nearest neighbors of the currently labeled set.
Our approach achieved similar mean average precision and recall as the traditional global approach while reducing the computational cost of selection by up to three orders of magnitude, thus enabling web-scale active learning.
arXiv Detail & Related papers (2020-06-30T19:46:10Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
In this paper, we build a unified active learning benchmark framework for EM.
The goal of the framework is to enable concrete guidelines for practitioners as to what active learning combinations will work well for EM.
Our framework also includes novel optimizations that improve the quality of the learned model by roughly 9% in terms of F1-score and reduce example selection latencies by up to 10x without affecting the quality of the model.
arXiv Detail & Related papers (2020-03-29T19:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.