論文の概要: Can AI help in screening Viral and COVID-19 pneumonia?
- arxiv url: http://arxiv.org/abs/2003.13145v3
- Date: Mon, 15 Jun 2020 08:43:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 13:12:36.006895
- Title: Can AI help in screening Viral and COVID-19 pneumonia?
- Title(参考訳): AIはウイルスとCOVID-19肺炎のスクリーニングに役立つか?
- Authors: Muhammad E. H. Chowdhury, Tawsifur Rahman, Amith Khandakar, Rashid
Mazhar, Muhammad Abdul Kadir, Zaid Bin Mahbub, Khandaker Reajul Islam,
Muhammad Salman Khan, Atif Iqbal, Nasser Al-Emadi, Mamun Bin Ibne Reaz, T. I.
Islam
- Abstract要約: 本研究の目的は,デジタル胸部X線画像からCOVID-19肺炎を自動的に検出するためのロバストな手法を提案することである。
このデータベースには423のCOVID-19、1485のウイルス性肺炎、1579の正常な胸部X線画像が含まれている。
両者の分類精度、精度、感度、特異性はそれぞれ99.7%、99.7%、99.55%、97.9%、97.95%、97.9%、98.8%であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus disease (COVID-19) is a pandemic disease, which has already
caused thousands of causalities and infected several millions of people
worldwide. Any technological tool enabling rapid screening of the COVID-19
infection with high accuracy can be crucially helpful to healthcare
professionals. The main clinical tool currently in use for the diagnosis of
COVID-19 is the Reverse transcription polymerase chain reaction (RT-PCR), which
is expensive, less-sensitive and requires specialized medical personnel. X-ray
imaging is an easily accessible tool that can be an excellent alternative in
the COVID-19 diagnosis. This research was taken to investigate the utility of
artificial intelligence (AI) in the rapid and accurate detection of COVID-19
from chest X-ray images. The aim of this paper is to propose a robust technique
for automatic detection of COVID-19 pneumonia from digital chest X-ray images
applying pre-trained deep-learning algorithms while maximizing the detection
accuracy. A public database was created by the authors combining several public
databases and also by collecting images from recently published articles. The
database contains a mixture of 423 COVID-19, 1485 viral pneumonia, and 1579
normal chest X-ray images. Transfer learning technique was used with the help
of image augmentation to train and validate several pre-trained deep
Convolutional Neural Networks (CNNs). The networks were trained to classify two
different schemes: i) normal and COVID-19 pneumonia; ii) normal, viral and
COVID-19 pneumonia with and without image augmentation. The classification
accuracy, precision, sensitivity, and specificity for both the schemes were
99.7%, 99.7%, 99.7% and 99.55% and 97.9%, 97.95%, 97.9%, and 98.8%,
respectively.
- Abstract(参考訳): 新型コロナウイルス(covid-19)は、既に何千もの因果関係を引き起こし、世界中で何百万人もの人々が感染しているパンデミック病である。
新型コロナウイルス感染症の迅速スクリーニングを高い精度で実現する技術は、医療専門家にとって極めて有用である。
現在新型コロナウイルスの診断に使われている主な臨床ツールはリバース転写ポリメラーゼ連鎖反応(RT-PCR)である。
X線イメージングは、新型コロナウイルスの診断において優れた代替手段となり得る、容易にアクセスできるツールである。
胸部X線画像からの新型コロナウイルスの迅速かつ正確な検出における人工知能(AI)の有用性について検討した。
本研究の目的は,予め学習した深層学習アルゴリズムを応用し,検出精度を最大化しつつ,デジタル胸部x線画像からcovid-19肺炎を自動的に検出するロバストな手法を提案することである。
公開データベースは、著者がいくつかの公開データベースを組み合わせて作成し、最近公開された記事の画像も収集した。
データベースには423のcovid-19、1485のウイルス性肺炎、1579の正常胸部x線画像が混在している。
転送学習技術は、画像強化の助けを借りて、事前訓練された深層畳み込みニューラルネットワーク(CNN)の訓練と検証に使用された。
ネットワークは2つの異なるスキームを分類するように訓練された。
i) 正常及び新型コロナウイルス肺炎
二 画像増強の有無にかかわらず、正常、ウイルス及び新型コロナウイルス肺炎。
分類精度,精度,感度,特異性はそれぞれ99.7%,99.7%,99.7%,99.55%,97.9%,97.95%,97.9%,98.8%であった。
関連論文リスト
- COVID-Net USPro: An Open-Source Explainable Few-Shot Deep Prototypical
Network to Monitor and Detect COVID-19 Infection from Point-of-Care
Ultrasound Images [66.63200823918429]
COVID-Net USProは、最小限の超音波画像から高精度で新型コロナウイルス陽性の患者を監視し、検出する。
ネットワーク全体では99.65%の精度、99.7%のリコール、99.67%の精度で5発の撮影で訓練された。
論文 参考訳(メタデータ) (2023-01-04T16:05:51Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
新型コロナウイルスは武漢で最初に確認され、急速に世界中に広がった。
最もアクセスしやすい方法はRT-PCRである。
RT-PCRと比較すると,胸部CTと胸部X線像が優れた結果を示した。
DenseNet169はX線画像から特徴を抽出するために使用された。
論文 参考訳(メタデータ) (2021-09-30T16:10:31Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved
Covid-19 Detection [6.123089440692208]
ウイルス(covid-19)は重症急性呼吸器症候群(sarscov-2)によるウイルス性疾患である。
初期の結果は、covid-19を示唆する患者の胸部x線に異常が存在することを示唆している。
convolutional neural networks(cnns)のようなディープラーニングシステムは、かなりの量のトレーニングデータを必要とする。
論文 参考訳(メタデータ) (2021-03-08T21:53:29Z) - Exploring the Effect of Image Enhancement Techniques on COVID-19
Detection using Chest X-rays Images [4.457871213347773]
本稿では,様々な画像強調技術の効果について検討し,それぞれが検出性能に与える影響について述べる。
我々はCOVQU-20と呼ばれる最大規模のX線データセットをコンパイルした。
CXR画像のガンマ補正による新型コロナウイルス検出における精度、精度、感度、f1スコア、特異度はそれぞれ96.29%、96.28%、96.29%、96.28%、96.27%であった。
論文 参考訳(メタデータ) (2020-11-25T20:58:27Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
本研究は,胸部X線画像のコンピュータ支援診断手法の開発の可能性を示した。
8,474個の胸部X線画像のデータセットを使用して、CNNベースのCADスキームをトレーニングし、テストする。
検査結果は、3つのクラスを分類する際の総合的精度の94.0%、コビッドウイルスの感染者を検出する際の精度の98.6%を達成している。
論文 参考訳(メタデータ) (2020-06-11T16:45:46Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z) - DeepCOVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray
Images [1.6855835471222005]
我々は、CXR画像から新型コロナウイルスの症状を自動的に検出するための説明可能なディープニューラルネットワーク(DNN)に基づく手法を提案する。
15,854例のCXR画像15,959例を使用し,正常例,肺炎例,COVID-19例を対象とした。
当社のアプローチでは、新型コロナウイルスを確実に91.6%、92.45%、96.12%の正の予測値(PPV)で識別することができる。
論文 参考訳(メタデータ) (2020-04-09T15:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。