PointGMM: a Neural GMM Network for Point Clouds
- URL: http://arxiv.org/abs/2003.13326v1
- Date: Mon, 30 Mar 2020 10:34:59 GMT
- Title: PointGMM: a Neural GMM Network for Point Clouds
- Authors: Amir Hertz, Rana Hanocka, Raja Giryes, Daniel Cohen-Or
- Abstract summary: Point clouds are popular representation for 3D shapes, but encode a particular sampling without accounting for shape priors or non-local information.
We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class.
We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistents between existing shapes.
- Score: 83.9404865744028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are a popular representation for 3D shapes. However, they encode
a particular sampling without accounting for shape priors or non-local
information. We advocate for the use of a hierarchical Gaussian mixture model
(hGMM), which is a compact, adaptive and lightweight representation that
probabilistically defines the underlying 3D surface. We present PointGMM, a
neural network that learns to generate hGMMs which are characteristic of the
shape class, and also coincide with the input point cloud. PointGMM is trained
over a collection of shapes to learn a class-specific prior. The hierarchical
representation has two main advantages: (i) coarse-to-fine learning, which
avoids converging to poor local-minima; and (ii) (an unsupervised) consistent
partitioning of the input shape. We show that as a generative model, PointGMM
learns a meaningful latent space which enables generating consistent
interpolations between existing shapes, as well as synthesizing novel shapes.
We also present a novel framework for rigid registration using PointGMM, that
learns to disentangle orientation from structure of an input shape.
Related papers
- Unsupervised Non-Rigid Point Cloud Matching through Large Vision Models [1.3030624795284795]
We propose a learning-based framework for non-rigid point cloud matching.
Key insight is to incorporate semantic features derived from large vision models (LVMs)
Our framework effectively leverages the structural information contained in the semantic features to address ambiguities arise from self-similarities among local geometries.
arXiv Detail & Related papers (2024-08-16T07:02:19Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
We propose a novel zero-shot approach to computing correspondences between 3D shapes.
We exploit the exceptional reasoning capabilities of recent foundation models in language and vision.
Our approach produces highly plausible results in a zero-shot manner, especially between strongly non-isometric shapes.
arXiv Detail & Related papers (2023-06-05T21:14:23Z) - Unsupervised Deep Probabilistic Approach for Partial Point Cloud
Registration [74.53755415380171]
Deep point cloud registration methods face challenges to partial overlaps and rely on labeled data.
We propose UDPReg, an unsupervised deep probabilistic registration framework for point clouds with partial overlaps.
Our UDPReg achieves competitive performance on the 3DMatch/3DLoMatch and ModelNet/ModelLoNet benchmarks.
arXiv Detail & Related papers (2023-03-23T14:18:06Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Robust Partial-to-Partial Point Cloud Registration in a Full Range [12.86951061306046]
We propose Graph Matching Consensus Network (GMCNet), which estimates pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud Registration (PPR)
GMCNet encodes point descriptors for each point cloud individually without using crosscontextual information, or ground truth correspondences for training.
arXiv Detail & Related papers (2021-11-30T17:56:24Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - PointManifold: Using Manifold Learning for Point Cloud Classification [5.705680763604835]
We propose a point cloud classification method based on graph neural network and manifold learning.
This paper uses manifold learning algorithms to embed point cloud features for better considering continuity on the surface.
Experiments show that the proposed point cloud classification methods obtain the mean class accuracy (mA) of 90.2% and the overall accuracy (oA) of 93.2%.
arXiv Detail & Related papers (2020-10-14T16:28:19Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.