Robust Partial-to-Partial Point Cloud Registration in a Full Range
- URL: http://arxiv.org/abs/2111.15606v1
- Date: Tue, 30 Nov 2021 17:56:24 GMT
- Title: Robust Partial-to-Partial Point Cloud Registration in a Full Range
- Authors: Liang Pan, Zhongang Cai, and Ziwei Liu
- Abstract summary: We propose Graph Matching Consensus Network (GMCNet), which estimates pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud Registration (PPR)
GMCNet encodes point descriptors for each point cloud individually without using crosscontextual information, or ground truth correspondences for training.
- Score: 12.86951061306046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration for 3D objects is very challenging due to sparse and
noisy measurements, incomplete observations and large transformations. In this
work, we propose Graph Matching Consensus Network (GMCNet), which estimates
pose-invariant correspondences for fullrange 1 Partial-to-Partial point cloud
Registration (PPR). To encode robust point descriptors, 1) we first
comprehensively investigate transformation-robustness and noiseresilience of
various geometric features. 2) Then, we employ a novel Transformation-robust
Point Transformer (TPT) modules to adaptively aggregate local features
regarding the structural relations, which takes advantage from both handcrafted
rotation-invariant ($RI$) features and noise-resilient spatial coordinates. 3)
Based on a synergy of hierarchical graph networks and graphical modeling, we
propose the Hierarchical Graphical Modeling (HGM) architecture to encode robust
descriptors consisting of i) a unary term learned from $RI$ features; and ii)
multiple smoothness terms encoded from neighboring point relations at different
scales through our TPT modules. Moreover, we construct a challenging PPR
dataset (MVP-RG) with virtual scans. Extensive experiments show that GMCNet
outperforms previous state-of-the-art methods for PPR. Remarkably, GMCNet
encodes point descriptors for each point cloud individually without using
crosscontextual information, or ground truth correspondences for training. Our
code and datasets will be available at https://github.com/paul007pl/GMCNet.
Related papers
- PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations [27.45001809414096]
PosDiffNet is a model for point cloud registration in 3D computer vision.
We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features.
We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds.
We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations.
arXiv Detail & Related papers (2024-01-06T08:58:15Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - Geometric Transformer for Fast and Robust Point Cloud Registration [53.10568889775553]
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios.
We propose Geometric Transformer to learn geometric feature for robust superpoint matching.
arXiv Detail & Related papers (2022-02-14T13:26:09Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
We propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration.
Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score.
Experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods.
arXiv Detail & Related papers (2021-07-06T12:52:22Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matchingbased framework for point cloud registration.
arXiv Detail & Related papers (2021-03-07T04:20:29Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z) - PointGMM: a Neural GMM Network for Point Clouds [83.9404865744028]
Point clouds are popular representation for 3D shapes, but encode a particular sampling without accounting for shape priors or non-local information.
We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class.
We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistents between existing shapes.
arXiv Detail & Related papers (2020-03-30T10:34:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.