Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents
- URL: http://arxiv.org/abs/2003.13441v2
- Date: Mon, 1 Mar 2021 14:36:32 GMT
- Title: Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents
- Authors: Daniel Hain, Roman Jurowetzki
- Abstract summary: We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen a substantial development of quantitative methods,
mostly led by the computer science community with the goal of developing better
machine learning applications, mainly focused on predictive modeling. However,
economic, management, and technology forecasting research has so far been
hesitant to apply predictive modeling techniques and workflows. In this paper,
we introduce a machine learning (ML) approach to quantitative analysis geared
towards optimizing the predictive performance, contrasting it with standard
practices inferential statistics, which focus on producing good parameter
estimates. We discuss the potential synergies between the two fields against
the backdrop of this, at first glance, target-incompatibility. We discuss
fundamental concepts in predictive modeling, such as out-of-sample model
validation, variable and model selection, generalization, and hyperparameter
tuning procedures. We are providing a hands-on predictive modeling introduction
for a quantitative social science audience while aiming at demystifying
computer science jargon. We use the illustrative example of patent quality
estimation - which should be a familiar topic of interest in the Scientometrics
community - guiding the reader through various model classes and procedures for
data pre-processing, modeling, and validation. We start off with more familiar
easy to interpret model classes (Logit and Elastic Nets), continues with less
familiar non-parametric approaches (Classification Trees, Random Forest,
Gradient Boosted Trees), and finally presents artificial neural network
architectures, first a simple feed-forward and then a deep autoencoder geared
towards rare-event prediction.
Related papers
- SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems.
As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition (EPD), commonly known as e-coating.
arXiv Detail & Related papers (2024-01-16T14:58:21Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
We present an empirical study of the Full.
Time Complexity (FPTC) approach by Zheng et al.
We study the formulations proposed for the Logistic Regression and Random Forest classifiers.
We observe how, from the conducted study, the prediction of training time is strictly related to the context.
arXiv Detail & Related papers (2023-09-20T11:35:03Z) - A review of predictive uncertainty estimation with machine learning [0.0]
We review the topic of predictive uncertainty estimation with machine learning algorithms.
We discuss the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions.
The review expedites our understanding on how to develop new algorithms tailored to users' needs.
arXiv Detail & Related papers (2022-09-17T10:36:30Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Goal-Directed Planning for Habituated Agents by Active Inference Using a
Variational Recurrent Neural Network [5.000272778136268]
This study shows that the predictive coding (PC) and active inference (AIF) frameworks can develop better generalization by learning a prior distribution in a low dimensional latent state space.
In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound.
Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data.
arXiv Detail & Related papers (2020-05-27T06:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.