QualEval: Qualitative Evaluation for Model Improvement
- URL: http://arxiv.org/abs/2311.02807v2
- Date: Sun, 5 May 2024 19:53:50 GMT
- Title: QualEval: Qualitative Evaluation for Model Improvement
- Authors: Vishvak Murahari, Ameet Deshpande, Peter Clark, Tanmay Rajpurohit, Ashish Sabharwal, Karthik Narasimhan, Ashwin Kalyan,
- Abstract summary: We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
- Score: 82.73561470966658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantitative evaluation metrics have traditionally been pivotal in gauging the advancements of artificial intelligence systems, including large language models (LLMs). However, these metrics have inherent limitations. Given the intricate nature of real-world tasks, a single scalar to quantify and compare is insufficient to capture the fine-grained nuances of model behavior. Metrics serve only as a way to compare and benchmark models, and do not yield actionable diagnostics, thus making the model improvement process challenging. Model developers find themselves amid extensive manual efforts involving sifting through vast datasets and attempting hit-or-miss adjustments to training data or setups. In this work, we address the shortcomings of quantitative metrics by proposing QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement. QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights that when applied, accelerate model improvement. The insights are backed by a comprehensive dashboard with fine-grained visualizations and human-interpretable analyses. We corroborate the faithfulness of QualEval by demonstrating that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative on a challenging dialogue task (DialogSum) when compared to baselines. QualEval successfully increases the pace of model development, thus in essence serving as a data-scientist-in-a-box. Given the focus on critiquing and improving current evaluation metrics, our method serves as a refreshingly new technique for both model evaluation and improvement.
Related papers
- Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models [1.6385815610837167]
This study investigates two prominent quality aware strategies to combat model drift.
The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness.
The latter makes use of learned vectors feature from existing models to guide the selection of future data, aligning it with the model's prior knowledge.
arXiv Detail & Related papers (2024-02-11T18:01:52Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Evaluating Representations with Readout Model Switching [18.475866691786695]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC) reveals the ability to understand a given text passage and answer questions based on it.
Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match.
We argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data.
arXiv Detail & Related papers (2022-03-05T14:15:59Z) - Rethinking Self-Supervision Objectives for Generalizable Coherence
Modeling [8.329870357145927]
Coherence evaluation of machine generated text is one of the principal applications of coherence models that needs to be investigated.
We explore training data and self-supervision objectives that result in a model that generalizes well across tasks.
We show empirically that increasing the density of negative samples improves the basic model, and using a global negative queue further improves and stabilizes the model while training with hard negative samples.
arXiv Detail & Related papers (2021-10-14T07:44:14Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
We propose a novel evaluation metric -- the Focus -- designed to quantify the faithfulness of explanations.
We show the robustness of the metric through randomization experiments, and then use Focus to evaluate and compare three popular explainability techniques.
Our results find LRP and GradCAM to be consistent and reliable, while the latter remains most competitive even when applied to poorly performing models.
arXiv Detail & Related papers (2021-09-28T07:10:24Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.