論文の概要: How Not to Give a FLOP: Combining Regularization and Pruning for
Efficient Inference
- arxiv url: http://arxiv.org/abs/2003.13593v2
- Date: Thu, 9 Apr 2020 11:21:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-12-18 06:22:38.333782
- Title: How Not to Give a FLOP: Combining Regularization and Pruning for
Efficient Inference
- Title(参考訳): フラップを与えない方法:効率的な推論のために正規化とpruningを組み合わせる
- Authors: Tai Vu, Emily Wen, Roy Nehoran
- Abstract要約: 本稿では,Deep Neural Networks(DNN)における計算複雑性の低減とより効率的な推論のための正規化とプルーニングの併用について検討する。
ネットワークプルーニングと協調して正規化を行うことにより、これらの組み合わせは2つのテクニックをそれぞれ個別に大幅に改善することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of speeding up deep learning models during the deployment phase
has been a large, expensive bottleneck in the modern tech industry. In this
paper, we examine the use of both regularization and pruning for reduced
computational complexity and more efficient inference in Deep Neural Networks
(DNNs). In particular, we apply mixup and cutout regularizations and soft
filter pruning to the ResNet architecture, focusing on minimizing
floating-point operations (FLOPs). Furthermore, by using regularization in
conjunction with network pruning, we show that such a combination makes a
substantial improvement over each of the two techniques individually.
- Abstract(参考訳): デプロイフェーズにおけるディープラーニングモデルのスピードアップという課題は、現代のテクノロジ業界において、大きくて高価なボトルネックでした。
本稿では,Deep Neural Networks(DNN)における計算複雑性の低減と,より効率的な推論のための正規化とプルーニングの併用について検討する。
特に,浮動小数点演算(FLOP)の最小化に焦点をあて,ミックスアップとカットアウトの正規化とソフトフィルタプルーニングをResNetアーキテクチャに適用する。
さらに,ネットワークプルーニングと協調して正規化を行うことにより,これらの組み合わせが,各手法を個別に大幅に改善することを示す。
関連論文リスト
- FALCON: FLOP-Aware Combinatorial Optimization for Neural Network Pruning [17.60353530072587]
ネットワークプルーニングは、性能を維持しながら、モデルサイズと計算コストを削減するソリューションを提供する。
現在のプルーニング法のほとんどは、非ゼロパラメータの数を減らし、空間性を改善することに重点を置いている。
本稿では,FALCONを提案する。FALCONは,モデル精度(忠実度),FLOP,スペーサ性制約を考慮に入れた,ネットワークプルーニングを最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T18:40:47Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
ネットワークの機能マップにスパシティを爆発させることは、推論のレイテンシを低減する方法の1つです。
そこで本研究では,セミ構造化されたアクティベーション空間を小さなランタイム修正によって活用する手法を提案する。
当社のアプローチでは,ImageNetデータセット上のResNet18モデルに対して,最小精度が1.1%の1.25倍の速度向上を実現している。
論文 参考訳(メタデータ) (2023-09-12T22:28:53Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
本稿では,様々な複雑な構造に応用可能な汎用チャネルプルーニング手法を提案する。
我々は、単一チャネルと結合チャネルの重要性を評価するために、フィッシャー情報に基づく統一されたメトリクスを導出する。
提案手法は,結合チャネルを含む任意の構造をプルークするために利用できる。
論文 参考訳(メタデータ) (2021-08-02T08:21:44Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Neural Pruning via Growing Regularization [82.9322109208353]
プルーニングの2つの中心的な問題:プルーニングのスケジュールと重み付けの重要度だ。
具体的には, ペナルティ要因が増大するL2正規化変種を提案し, 精度が著しく向上することを示した。
提案アルゴリズムは,構造化プルーニングと非構造化プルーニングの両方において,大規模データセットとネットワークの実装が容易かつスケーラブルである。
論文 参考訳(メタデータ) (2020-12-16T20:16:28Z) - Structured Convolutions for Efficient Neural Network Design [65.36569572213027]
畳み込みニューラルネットワーク構築ブロックのテクスト単純構造における冗長性を利用してモデル効率に取り組む。
この分解が2Dカーネルや3Dカーネルだけでなく、完全に接続されたレイヤにも適用可能であることを示す。
論文 参考訳(メタデータ) (2020-08-06T04:38:38Z) - Learning Sparse Filters in Deep Convolutional Neural Networks with a
l1/l2 Pseudo-Norm [5.3791844634527495]
ディープニューラルネットワーク(DNN)は、多くのタスクで効率的であることが証明されているが、高いメモリと計算コストが伴う。
近年の研究では、それらの構造は性能を損なうことなくよりコンパクトにすることができることが示されている。
フィルタ係数に定義された比 l1/l2 の擬ノルムに基づいて, 疎度誘導正規化項を提案する。
論文 参考訳(メタデータ) (2020-07-20T11:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。