Mining International Political Norms from the GDELT Database
- URL: http://arxiv.org/abs/2003.14027v2
- Date: Mon, 20 Apr 2020 16:11:13 GMT
- Title: Mining International Political Norms from the GDELT Database
- Authors: Rohit Murali, Suravi Patnaik, Stephen Cranefield
- Abstract summary: This work investigates the role that norms can play in governing agent actions in multi-agent systems.
We use the GDELT dataset, containing machine-encoded records of international events extracted from news reports.
We apply a Bayesian norm mining mechanism to identify norms that best explained the observed behaviour.
- Score: 3.190574537106449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers have long been interested in the role that norms can play in
governing agent actions in multi-agent systems. Much work has been done on
formalising normative concepts from human society and adapting them for the
government of open software systems, and on the simulation of normative
processes in human and artificial societies. However, there has been
comparatively little work on applying normative MAS mechanisms to understanding
the norms in human society.
This work investigates this issue in the context of international politics.
Using the GDELT dataset, containing machine-encoded records of international
events extracted from news reports, we extracted bilateral sequences of
inter-country events and applied a Bayesian norm mining mechanism to identify
norms that best explained the observed behaviour. A statistical evaluation
showed that the normative model fitted the data significantly better than a
probabilistic discrete event model.
Related papers
- Normative Requirements Operationalization with Large Language Models [3.456725053685842]
Normative non-functional requirements specify constraints that a system must observe in order to avoid violations of social, legal, ethical, empathetic, and cultural norms.
Recent research has tackled this challenge using a domain-specific language to specify normative requirements.
We propose a complementary approach that uses Large Language Models to extract semantic relationships between abstract representations of system capabilities.
arXiv Detail & Related papers (2024-04-18T17:01:34Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Informed AI Regulation: Comparing the Ethical Frameworks of Leading LLM
Chatbots Using an Ethics-Based Audit to Assess Moral Reasoning and Normative
Values [0.0]
Ethics-based audits play a pivotal role in the rapidly growing fields of AI safety and regulation.
This paper undertakes an ethics-based audit to probe the 8 leading commercial and open-source Large Language Models including GPT-4.
arXiv Detail & Related papers (2024-01-09T14:57:30Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Federated Privacy-preserving Collaborative Filtering for On-Device Next
App Prediction [52.16923290335873]
We propose a novel SeqMF model to solve the problem of predicting the next app launch during mobile device usage.
We modify the structure of the classical matrix factorization model and update the training procedure to sequential learning.
One more ingredient of the proposed approach is a new privacy mechanism that guarantees the protection of the sent data from the users to the remote server.
arXiv Detail & Related papers (2023-02-05T10:29:57Z) - The Ordered Matrix Dirichlet for Modeling Ordinal Dynamics [54.96229007229786]
We propose the Ordered Matrix Dirichlet (OMD) to map latent states to observed action types.
Models built on the OMD recover interpretable latent states and show superior forecasting performance in few-shot settings.
arXiv Detail & Related papers (2022-12-08T08:04:26Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
We study the behaviors of models under different fine-tuning methodologies, including full fine-tuning and Low-Rank Adaptation (LoRA) fine-tuning methods.
Our analysis uncovers that LoRA fine-tuning consistently exhibits significantly better OOD generalization performance than full fine-tuning across various scenarios.
arXiv Detail & Related papers (2022-10-10T16:07:24Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
We introduce the general framework of relational action bases (RABs)
RABs generalize existing models by lifting both restrictions.
We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes.
arXiv Detail & Related papers (2022-08-12T17:03:50Z) - The Complexity of Data-Driven Norm Synthesis and Revision [19.235739945526877]
We consider the problem of synthesising a norm from traces of agent behaviour.
Each trace is labelled with whether the behaviour satisfies the system objective.
We show that the norm synthesis problem is NP-complete.
arXiv Detail & Related papers (2021-12-05T17:15:00Z) - Moral Stories: Situated Reasoning about Norms, Intents, Actions, and
their Consequences [36.884156839960184]
We investigate whether contemporary NLG models can function as behavioral priors for systems deployed in social settings.
We introduce 'Moral Stories', a crowd-sourced dataset of structured, branching narratives for the study of grounded, goal-oriented social reasoning.
arXiv Detail & Related papers (2020-12-31T17:28:01Z) - Norm Identification through Plan Recognition [22.387008072671005]
Societal rules aim to provide a degree of behavioural stability to multi-agent societies.
Many implementations of normative systems assume various combinations of the following assumptions.
We develop a norm identification mechanism that uses a combination of parsing-based plan recognition and Hierarchical Task Network (HTN) planning mechanisms.
arXiv Detail & Related papers (2020-10-06T11:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.