論文の概要: How Useful is Self-Supervised Pretraining for Visual Tasks?
- arxiv url: http://arxiv.org/abs/2003.14323v1
- Date: Tue, 31 Mar 2020 16:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 00:20:38.621693
- Title: How Useful is Self-Supervised Pretraining for Visual Tasks?
- Title(参考訳): 視覚タスクの自己監督型事前トレーニングはどの程度有用か?
- Authors: Alejandro Newell, Jia Deng
- Abstract要約: 我々は、総合的な合成データセットと下流タスクにまたがる様々な自己教師付きアルゴリズムを評価する。
我々の実験は、利用可能なラベルの数が増えるにつれて、セルフスーパービジョンの有用性がどう変化するかについての洞察を提供する。
- 参考スコア(独自算出の注目度): 133.1984299177874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances have spurred incredible progress in self-supervised
pretraining for vision. We investigate what factors may play a role in the
utility of these pretraining methods for practitioners. To do this, we evaluate
various self-supervised algorithms across a comprehensive array of synthetic
datasets and downstream tasks. We prepare a suite of synthetic data that
enables an endless supply of annotated images as well as full control over
dataset difficulty. Our experiments offer insights into how the utility of
self-supervision changes as the number of available labels grows as well as how
the utility changes as a function of the downstream task and the properties of
the training data. We also find that linear evaluation does not correlate with
finetuning performance. Code and data is available at
\href{https://www.github.com/princeton-vl/selfstudy}{github.com/princeton-vl/selfstudy}.
- Abstract(参考訳): 近年の進歩は、ビジョンのための自己監督型事前訓練の驚くべき進歩をもたらした。
本研究は,これらのプリトレーニング手法の有用性にどのような役割を果たせるかを検討する。
そこで本研究では,合成データセットと下流タスクの包括的配列にまたがる,様々な自己教師型アルゴリズムを評価する。
我々は,注釈付き画像の無限供給を可能にするとともに,データセットの難易度を完全に制御できる合成データ群を作成する。
実験では,ラベル数の増加に伴って自己スーパービジョンの有用性がどう変化するか,下流タスクの機能やトレーニングデータの特性としての有用性がどのように変化するか,という知見を提供する。
また,線形評価は微調整性能と相関しないことがわかった。
コードとデータは \href{https://www.github.com/princeton-vl/selfstudy}{github.com/princeton-vl/selfstudy} で入手できる。
関連論文リスト
- Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration [54.8229698058649]
本研究では,未ラベルの事前軌跡データを用いて効率的な探索戦略を学習する方法について検討する。
我々の手法 SUPE (Skills from Unlabeled Prior Data for Exploration) は、これらのアイデアの慎重な組み合わせがそれらの利点を兼ね備えていることを示す。
実験により,SUPEが従来の戦略を確実に上回り,長い水平・スパース・リワードタスクの一組の解決に成功したことを実証的に示す。
論文 参考訳(メタデータ) (2024-10-23T17:58:45Z) - An Experimental Comparison Of Multi-view Self-supervised Methods For Music Tagging [6.363158395541767]
自己教師付き学習は、大量のラベルのないデータに基づいて、一般化可能な機械学習モデルを事前訓練するための強力な方法として登場した。
本研究では,音楽タギングのための新たな自己指導手法の性能について検討し,比較する。
論文 参考訳(メタデータ) (2024-04-14T07:56:08Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Adversarial Auto-Augment with Label Preservation: A Representation
Learning Principle Guided Approach [95.74102207187545]
本研究では,事前自由な自律的データ拡張の目的が表現学習の原則から導出可能であることを示す。
そこで我々は,既存の手法にシームレスに最適化し,シームレスに統合できる目的に対して,実用的なサロゲートを提案する。
論文 参考訳(メタデータ) (2022-11-02T02:02:51Z) - Where Should I Spend My FLOPS? Efficiency Evaluations of Visual
Pre-training Methods [29.141145775835106]
固定されたFLOP予算が与えられた場合、代表的な視覚的タスクに対して高い正確性を得るために最適なデータセット、モデル、そして(自己監督的な)トレーニング方法は何ですか?
5つの大規模データセット(JFT-300M, ALIGN, ImageNet-1K, ImageNet-21K, COCO)と6つの事前学習方法(CLIP, DINO, SimCLR, BYOL, Masked Autoencoding, and supervised)を検討した。
本稿の結果は,自己管理手法が本質的に大規模で未処理なデータにスケールする,という一般的な仮定に疑問を投げかけるものである。
論文 参考訳(メタデータ) (2022-09-30T17:04:55Z) - Self-Supervised Visual Representation Learning Using Lightweight
Architectures [0.0]
自己教師付き学習では、マシンによってアノテーションが生成されるデータセットを使用して、プレテキストタスクを解決するためにモデルが訓練される。
我々は、画像データから特徴を抽出する最も顕著な前文タスクを批判的に検討する。
我々は、他の全てのパラメータを均一に保ちながら、様々な自己監督技術の性能について研究する。
論文 参考訳(メタデータ) (2021-10-21T14:13:10Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
オンライン」連続学習は、情報保持とオンライン学習の有効性の両方を評価することができる。
オンライン連続学習では、入力される各小さなデータをまずテストに使用し、次にトレーニングセットに追加し、真にオンラインにします。
本稿では,大規模かつ自然な分布変化を示すオンライン連続視覚学習のための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:17:20Z) - Improving Few-Shot Learning with Auxiliary Self-Supervised Pretext Tasks [0.0]
最近の少数ショット学習の研究は、学習された表現の質が少数ショット分類のパフォーマンスにおいて重要な役割を果たしていることを示しています。
一方,自己教師付き学習の目標は,クラスラベルを使わずにデータの有用な意味情報を復元することである。
我々は,最近の自己教師あり手法を補助タスクとして利用するマルチタスクフレームワークを用いて,両パラダイムの相補性を活用する。
論文 参考訳(メタデータ) (2021-01-24T23:21:43Z) - Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling [19.24454872492008]
弱監督は、基礎的な真理ラベルなしでラベル付きデータセットを作成するための有望な代替手段を提供する。
本稿では,対話型弱監督のための最初のフレームワークを開発し,その手法が反復を提案し,ユーザフィードバックから学習する。
私たちの実験は、非常に競争力のあるテストセット性能を達成するモデルのトレーニングに少数のフィードバックが必要であることを示しています。
論文 参考訳(メタデータ) (2020-12-11T00:10:38Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。