Topological Protection in non-Hermitian Haldane Honeycomb Lattices
- URL: http://arxiv.org/abs/2003.14375v1
- Date: Tue, 31 Mar 2020 17:14:51 GMT
- Title: Topological Protection in non-Hermitian Haldane Honeycomb Lattices
- Authors: Pablo Res\'endiz-V\'azquez, Konrad Tschernig, Armando Perez-Leija,
Kurt Busch, Roberto de J. Le\'on-Montiel
- Abstract summary: Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the photonics and condensed-matter communities.
We present the first study on the emergence of topological edge states in two-dimensional Haldane lattices exhibiting balanced gain and loss.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological phenomena in non-Hermitian systems have recently become a subject
of great interest in the photonics and condensed-matter communities. In
particular, the possibility of observing topologically-protected edge states in
non-Hermitian lattices has sparked an intensive search for systems where this
kind of states are sustained. Here, we present the first study on the emergence
of topological edge states in two-dimensional Haldane lattices exhibiting
balanced gain and loss. In line with recent studies on other Chern insulator
models, we show that edge states can be observed in the so-called broken
$\mathcal{P}\mathcal{T}$-symmetric phase, that is, when the spectrum of the
gain-loss-balanced system's Hamiltonian is not entirely real. More importantly,
we find that such topologically protected edge states emerge irrespective of
the lattice boundaries, namely zigzag, bearded or armchair.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Tailoring Bound State Geometry in High-Dimensional Non-Hermitian Systems [12.085380828370914]
The non-Hermitian effect (NHSE) creates barriers for the appearance of impurity bound states.
Our work reveals a geometry transition of bound state between concavity and convexity in high-dimensional non-Hermitian systems.
arXiv Detail & Related papers (2024-06-11T18:00:12Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Topological properties of non-Hermitian Creutz Ladders [0.0]
We study topological properties of the one-dimensional Creutz ladder model with different non-Hermitian asymmetric hoppings and on-site imaginary potentials.
The non-Hermitian skin effect (NHSE) emerges in the system only when the non-Hermiticity induces certain unbalanced non-reciprocity along the ladder.
arXiv Detail & Related papers (2021-08-29T12:38:53Z) - The topological vacuum in exceptional Brillouin zone [0.0]
Coalescence of eigenstates eliminates the geometric multiplicity of the Hamiltonian and puts the remaining bands on a topological background.
We find several distinct phenomena in these systems: a single band topological model, a two-band Chern insulator in which the topological number of the low band does not compensate to that of the up band, a topologically protected boundary state that is less damping when stronger dissipative forces are subjected and topologically protected in-gap extended states.
arXiv Detail & Related papers (2021-04-02T01:56:30Z) - Large Chern numbers in a dissipative dice model [0.0]
We show that the topological phases are protected by the real gaps and the bulk-edge correspondence.
We find that there are topological non-trivial phases with large Chern numbers $C=-3$ robust against the dissipative perturbations.
arXiv Detail & Related papers (2020-09-12T10:54:42Z) - Majorana bound states in topological insulators with hidden Dirac points [25.488181126364186]
We show that well-defined Majorana bound states can be obtained even in materials with hidden Dirac point.
The obtained topological phase diagram allows one to extract precisely the position of the Dirac point in the spectrum.
arXiv Detail & Related papers (2020-04-22T15:04:39Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.