Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons
- URL: http://arxiv.org/abs/2504.04882v1
- Date: Mon, 07 Apr 2025 09:43:43 GMT
- Title: Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons
- Authors: Miao Zhang, Yue Zhang, Shuai Li, Rui Tian, Tianhao Wu, Yingchao Xu, Yi-an Li, Yuanbang Wei, Hong Gao, M. Suhail Zubairy, Fuli Li, Bo Liu,
- Abstract summary: In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.<n>We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
- Score: 31.05848822220465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The breakdown of conventional bulk-boundary correspondence, a cornerstone of topological physics, is one of counter-intuitive phenomena in non-Hermitian systems, that is deeply rooted in symmetry. In particular, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology. Nevertheless, chiral symmetry breaking in non-Hermitian systems disrupts topological protection, modifies topological invariants, and substantially reshapes spectral and edge-state behavior. The corresponding fundamentally important bulk-boundary correspondence thus needs to be drastically reconstructed. However, it has so far eluded experimental efforts. Here, we theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking in discrete-time non-chiral non-unitary quantum walks of single photons. Through constructing a domain-wall configuration, we experimentally observe the photon localization at the interface of domain-wall structure, clearly indicating the presence of the topological edge mode. The appearance of that matches excellently with the prediction of our introduced non-chiral non-Bloch topological invariants pair. Our work thus unequivocally builds the non-Hermitian bulk-boundary correspondence as a general principle for studying topological physics in non-Hermitian systems with chiral symmetry breaking.
Related papers
- Observation of topology of non-Hermitian systems without chiral symmetry [10.285214278728528]
We propose a general approach for measuring the topological invariants of one-dimensional non-Hermitian systems.
By utilizing a dilation method, we realize a non-Hermitian system without chiral symmetry.
In addition to examining the topology of the eigenstates, our experiment also reveals the topological structure of the energy band.
arXiv Detail & Related papers (2025-04-22T06:21:24Z) - Nonlinearity-driven Topology via Spontaneous Symmetry Breaking [79.16635054977068]
We consider a chain of parametrically-driven quantum resonators coupled only via weak nearest-neighbour cross-Kerr interaction.<n>Topology is dictated by the structure of the Kerr nonlinearity, yielding a non-trivial bulk-boundary correspondence.
arXiv Detail & Related papers (2025-03-15T00:20:45Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)<n>Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.<n>These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.<n>We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Homotopy, Symmetry, and Non-Hermitian Band Topology [4.777212360753631]
We show that non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings.
We reveal different Abelian and non-Abelian phases in $mathcalPT$-symmetric systems.
These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena.
arXiv Detail & Related papers (2023-09-25T18:00:01Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in
Photonic Lattices [14.450949607717437]
We experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry.
Our results demonstrate that inversion symmetry protects the quantized Zak phase, but edge states can disappear in the topological nontrivial phase.
Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.
arXiv Detail & Related papers (2021-09-28T13:35:44Z) - Detecting non-Bloch topological invariants in quantum dynamics [7.544412038291252]
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian systems.
We report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks.
Our work sheds new light on the experimental investigation of non-Hermitian topology.
arXiv Detail & Related papers (2021-07-30T16:40:30Z) - Pseudo-chirality: a manifestation of Noether's theorem in non-Hermitian
systems [0.0]
We reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries.
We discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.
arXiv Detail & Related papers (2021-01-22T17:51:15Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.