論文の概要: Conditional Channel Gated Networks for Task-Aware Continual Learning
- arxiv url: http://arxiv.org/abs/2004.00070v1
- Date: Tue, 31 Mar 2020 19:35:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 00:04:17.741192
- Title: Conditional Channel Gated Networks for Task-Aware Continual Learning
- Title(参考訳): タスク認識連続学習のための条件付きチャネルゲーテッドネットワーク
- Authors: Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara,
Rita Cucchiara, Babak Ehteshami Bejnordi
- Abstract要約: 畳み込みニューラルネットワークは、一連の学習問題に最適化された場合、破滅的な忘れを経験する。
本稿では,この問題に条件付き計算で対処する新しい枠組みを提案する。
提案手法を4つの連続学習データセットで検証する。
- 参考スコア(独自算出の注目度): 44.894710899300435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks experience catastrophic forgetting when
optimized on a sequence of learning problems: as they meet the objective of the
current training examples, their performance on previous tasks drops
drastically. In this work, we introduce a novel framework to tackle this
problem with conditional computation. We equip each convolutional layer with
task-specific gating modules, selecting which filters to apply on the given
input. This way, we achieve two appealing properties. Firstly, the execution
patterns of the gates allow to identify and protect important filters, ensuring
no loss in the performance of the model for previously learned tasks. Secondly,
by using a sparsity objective, we can promote the selection of a limited set of
kernels, allowing to retain sufficient model capacity to digest new
tasks.Existing solutions require, at test time, awareness of the task to which
each example belongs to. This knowledge, however, may not be available in many
practical scenarios. Therefore, we additionally introduce a task classifier
that predicts the task label of each example, to deal with settings in which a
task oracle is not available. We validate our proposal on four continual
learning datasets. Results show that our model consistently outperforms
existing methods both in the presence and the absence of a task oracle.
Notably, on Split SVHN and Imagenet-50 datasets, our model yields up to 23.98%
and 17.42% improvement in accuracy w.r.t. competing methods.
- Abstract(参考訳): 畳み込みニューラルネットワーク(convolutional neural network)は、学習問題の列に最適化された場合、壊滅的な遅れを経験する。
本研究では,条件付き計算でこの問題に対処する新しい枠組みを提案する。
我々は各畳み込み層にタスク固有のゲーティングモジュールを設け、与えられた入力にどのフィルタを適用するかを選択する。
このようにして、2つの魅力的な性質が得られる。
まず、ゲートの実行パターンによって重要なフィルタの識別と保護が可能になり、学習済みのタスクでモデルのパフォーマンスが損なわれないようにします。
第二に、sparsityの目的を用いることで、限られた一連のカーネルの選択を促進することができ、新しいタスクを消化する十分なモデル能力を保持することができる。
しかし、この知識は多くの実践的なシナリオでは利用できないかもしれない。
そこで我々は,各例のタスクラベルを予測するタスク分類器を導入して,oracle タスクが利用できないような設定に対処します。
提案手法を4つの連続学習データセットで検証する。
その結果、我々のモデルはタスク・オラクルの存在と欠如の両方において既存の手法を一貫して上回ります。
特に、Split SVHNとImagenet-50データセットでは、競合する手法で最大23.98%と17.42%の改善が得られた。
関連論文リスト
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Prior-Free Continual Learning with Unlabeled Data in the Wild [24.14279172551939]
本稿では,新しいタスクの学習モデルを段階的に更新するPFCL法を提案する。
PFCLはタスクのアイデンティティや以前のデータを知ることなく、新しいタスクを学習する。
実験の結果,PFCL法は3つの学習シナリオすべてにおいて,忘れを著しく軽減することがわかった。
論文 参考訳(メタデータ) (2023-10-16T13:59:56Z) - Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks [69.38572074372392]
本稿では,複数タスクにおける非線形モデルを用いたトレーニング中に特徴学習が発生することを示す最初の結果を示す。
私たちのキーとなる洞察は、マルチタスク事前トレーニングは、通常タスク間で同じラベルを持つポイントを整列する表現を好む擬似コントラスト的損失を誘導するということです。
論文 参考訳(メタデータ) (2023-07-13T16:39:08Z) - Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning [60.501201259732625]
EFCILにタスク適応型サリエンシを導入し、タスク適応型サリエンシ・スーパービジョン(TASS)と呼ばれる新しいフレームワークを提案する。
提案手法は,CIFAR-100, Tiny-ImageNet, ImageNet-Subset EFCILベンチマークを用いて,タスク間のサリエンシマップの保存や,最先端の成果の達成に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-16T02:43:52Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Instance-Level Task Parameters: A Robust Multi-task Weighting Framework [17.639472693362926]
最近の研究によると、ディープニューラルネットワークは、複数の関連するタスク間で共有表現を学習することで、マルチタスク学習の恩恵を受けている。
トレーニングプロセスは、データセットの各インスタンスに対するタスクの最適な重み付けを規定します。
我々は,SURREALとCityScapesのデータセットを用いて,人間の形状とポーズ推定,深さ推定,セマンティックセグメンテーションタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-06-11T02:35:42Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
本稿では,メタ学習時の情報フローをモデル設計者が制御できるように,メタ学習モデルの正規化手法を提案する。
提案した正規化関数は,Omniglotデータセット上で$sim$$36%の精度向上を示す。
論文 参考訳(メタデータ) (2021-01-24T22:57:19Z) - Lifelong Learning Without a Task Oracle [13.331659934508764]
監視されたディープニューラルネットワークは、新しいタスクが学習されると、古いタスクの精度が大幅に低下することが知られている。
本稿では,メモリオーバーヘッドの少ないタスク割り当てマップの提案と比較を行う。
最高のパフォーマンスの変種は、平均的なパラメータメモリの増大を1.7%に抑えるだけである。
論文 参考訳(メタデータ) (2020-11-09T21:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。