論文の概要: The Edge of Depth: Explicit Constraints between Segmentation and Depth
- arxiv url: http://arxiv.org/abs/2004.00171v1
- Date: Wed, 1 Apr 2020 00:03:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 18:45:05.078190
- Title: The Edge of Depth: Explicit Constraints between Segmentation and Depth
- Title(参考訳): 深さの端:セグメンテーションと深さの明確な制約
- Authors: Shengjie Zhu, Garrick Brazil, Xiaoming Liu
- Abstract要約: 画像からの自己教師付き深度推定とセマンティックセグメンテーションという2つの共通コンピュータビジョンタスクの相互利益について検討する。
セグメンテーションと深さの境界の整合性を明示的に測定し,最小化することを提案する。
提案手法は広範にわたる実験を通じて,KITTIにおける教師なし単分子深度推定技術の現状を推し進めるものである。
- 参考スコア(独自算出の注目度): 25.232436455640716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we study the mutual benefits of two common computer vision
tasks, self-supervised depth estimation and semantic segmentation from images.
For example, to help unsupervised monocular depth estimation, constraints from
semantic segmentation has been explored implicitly such as sharing and
transforming features. In contrast, we propose to explicitly measure the border
consistency between segmentation and depth and minimize it in a greedy manner
by iteratively supervising the network towards a locally optimal solution.
Partially this is motivated by our observation that semantic segmentation even
trained with limited ground truth (200 images of KITTI) can offer more accurate
border than that of any (monocular or stereo) image-based depth estimation.
Through extensive experiments, our proposed approach advances the state of the
art on unsupervised monocular depth estimation in the KITTI.
- Abstract(参考訳): 本研究では,画像からの自己教師付き深度推定とセマンティックセグメンテーションという2つの共通コンピュータビジョンタスクの相互利益について検討する。
例えば、教師なし単眼深度推定を支援するために、機能共有や変換といった意味セグメンテーションからの制約が暗黙的に検討されている。
対照的に,ネットワークを局所最適解に向けて反復的に監督することにより,セグメンテーションと深さの境界の一貫性を明示的に測定し,それを最小限に抑えることを提案する。
このことは,限定的真実(KITTIの200枚の画像)で訓練したセマンティックセマンティックセグメンテーションが,どの(眼球やステレオ)画像よりも正確な境界を推定できるという我々の観察に動機づけられている。
広範な実験を通じて,提案手法はキティの非教師なし単眼深度推定技術の発展に寄与する。
関連論文リスト
- Towards Deeply Unified Depth-aware Panoptic Segmentation with
Bi-directional Guidance Learning [63.63516124646916]
深度認識型パノプティックセグメンテーションのためのフレームワークを提案する。
本稿では,クロスタスク機能学習を容易にする双方向指導学習手法を提案する。
本手法は,Cityscapes-DVPS と SemKITTI-DVPS の両データセットを用いた深度認識型パノプティックセグメンテーションのための新しい手法である。
論文 参考訳(メタデータ) (2023-07-27T11:28:33Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
自己教師付き単眼深度推定のためのOcclusion-aware Coarse-to-Fine Depth Mapを学習するための新しいネットワークを提案する。
提案したOCFD-Netは,粗度深度マップの学習に離散深度制約を用いるだけでなく,シーン深度残差の学習にも連続深度制約を用いる。
論文 参考訳(メタデータ) (2022-03-21T12:43:42Z) - X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
Distillation [69.9604394044652]
そこで本研究では,クロスタスク知識蒸留による単眼深度の自己指導的訓練を改善する手法を提案する。
トレーニングでは,事前訓練されたセマンティックセグメンテーション教師ネットワークを使用し,そのセマンティック知識を深度ネットワークに転送する。
提案手法の有効性をKITTIベンチマークで評価し,最新技術と比較した。
論文 参考訳(メタデータ) (2021-10-24T19:47:14Z) - Self-Supervised Monocular Depth Estimation with Internal Feature Fusion [12.874712571149725]
深度推定のための自己教師付き学習は、画像列の幾何学を用いて監督する。
そこで本研究では,ダウンおよびアップサンプリングの手順で意味情報を利用することのできる,新しい深度推定ネットワークDIFFNetを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:31:11Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
我々は,深部MDEネットワークの解釈可能性について,その隠蔽ユニットの深さ選択性を用いて定量化する。
本稿では,解釈可能なMDE深層ネットワークを,元のアーキテクチャを変更することなく学習する手法を提案する。
実験により,本手法は深部MDEネットワークの解釈可能性を向上させることができることが示された。
論文 参考訳(メタデータ) (2021-08-11T16:43:45Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
セマンティックセグメンテーションのためのドメイン適応は、ソースとターゲットドメイン間の分散シフトの存在下でモデルのパフォーマンスを向上させることを目的とする。
ドメイン間のギャップを埋めるために、両ドメインで利用可能な自己教師付き深さ推定からのガイダンスを活用します。
提案手法のベンチマークタスクSYNTHIA-to-CityscapesとGTA-to-Cityscapesの有効性を実証する。
論文 参考訳(メタデータ) (2021-04-28T07:47:36Z) - Learning Depth via Leveraging Semantics: Self-supervised Monocular Depth
Estimation with Both Implicit and Explicit Semantic Guidance [34.62415122883441]
シーン認識深度推定のための暗黙的意味特徴と深度特徴とを一致させるセマンティック認識空間特徴アライメント方式を提案する。
また,推定深度マップを実シーンの文脈特性と整合性に明示的に制約する意味誘導型ランキング損失を提案する。
複雑なシーンや多様なセマンティックカテゴリで一貫して優れた、高品質な深度マップを作成します。
論文 参考訳(メタデータ) (2021-02-11T14:29:51Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Semantic-Guided Representation Enhancement for Self-supervised Monocular
Trained Depth Estimation [39.845944724079814]
自己教師付き深度推定は,画像列のみを入力として,高品質の深度マップを作成する上で大きな効果を示した。
しかし、その性能は通常、限界深度表現能力のために境界領域や細い構造を持つ物体を推定する際に低下する。
局所的および大域的な深度特徴表現を促進する意味誘導深度表現拡張法を提案する。
論文 参考訳(メタデータ) (2020-12-15T02:24:57Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
本稿では,自己教師付ステレオマッチング法から生成されたステレオ画像の擬似地上真実深度マップを利用する新しい手法を提案する。
擬似地底深度マップの信頼度マップを推定し、不正確な擬似地底深度マップによる性能劣化を緩和する。
実験結果から, 最先端の単分子深度推定法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-27T13:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。