論文の概要: Semi-Supervised Cervical Dysplasia Classification With Learnable Graph
Convolutional Network
- arxiv url: http://arxiv.org/abs/2004.00191v1
- Date: Wed, 1 Apr 2020 01:53:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 18:37:49.101077
- Title: Semi-Supervised Cervical Dysplasia Classification With Learnable Graph
Convolutional Network
- Title(参考訳): 学習型グラフ畳み込みネットワークを用いた半監督型頚椎変性症分類
- Authors: Yanglan Ou, Yuan Xue, Ye Yuan, Tao Xu, Vincent Pisztora, Jia Li,
Xiaolei Huang
- Abstract要約: デジタル頸椎造影は一次検診や補助検診ツールとして大きな可能性を秘めている。
従来の完全教師付きトレーニングでは、大量の注釈付きデータが必要である。
本稿では,新しいグラフ畳み込みネットワーク(GCN)に基づく半教師付き分類モデルを提案する。
- 参考スコア(独自算出の注目度): 25.685255609487623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cervical cancer is the second most prevalent cancer affecting women today. As
the early detection of cervical carcinoma relies heavily upon screening and
pre-clinical testing, digital cervicography has great potential as a primary or
auxiliary screening tool, especially in low-resource regions due to its low
cost and easy access. Although an automated cervical dysplasia detection system
has been desirable, traditional fully-supervised training of such systems
requires large amounts of annotated data which are often labor-intensive to
collect. To alleviate the need for much manual annotation, we propose a novel
graph convolutional network (GCN) based semi-supervised classification model
that can be trained with fewer annotations. In existing GCNs, graphs are
constructed with fixed features and can not be updated during the learning
process. This limits their ability to exploit new features learned during graph
convolution. In this paper, we propose a novel and more flexible GCN model with
a feature encoder that adaptively updates the adjacency matrix during learning
and demonstrate that this model design leads to improved performance. Our
experimental results on a cervical dysplasia classification dataset show that
the proposed framework outperforms previous methods under a semi-supervised
setting, especially when the labeled samples are scarce.
- Abstract(参考訳): 子宮頸癌は、現在女性に影響を及ぼす2番目に多いがんである。
子宮頸癌の早期発見はスクリーニングや前臨床検査に大きく依存しているため,特に低コストでアクセスが容易な低リソース領域において,初回検診や補助検診ツールとして大きな可能性を秘めている。
頚椎脱臼の自動検出システムは望ましいが, 従来の完全監督訓練では大量の注釈データが必要であり, 収集に手間がかかることが多い。
手動のアノテーションの必要性を軽減するため、より少ないアノテーションでトレーニングできる新しいグラフ畳み込みネットワーク(GCN)に基づく半教師付き分類モデルを提案する。
既存のgcnでは、グラフは固定された機能で構築されており、学習プロセスでは更新できない。
これにより、グラフ畳み込み中に学んだ新機能を利用する能力が制限される。
本稿では,学習中に隣接行列を適応的に更新する特徴エンコーダを備えた,新しい,より柔軟なgcnモデルを提案する。
頚椎異形成症分類データセットにおける実験結果から,提案フレームワークは,特にラベル付きサンプルが不足している場合において,半教師付き設定下では従来手法よりも優れていた。
関連論文リスト
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
本モデルでは, 完全教師付きベースラインモデルにより, オンパー性能が向上することを示す。
また、未確認データドメインでテストした場合、完全に教師付きモデルと弱い教師付きモデルの両方のパフォーマンス低下も観察する。
論文 参考訳(メタデータ) (2024-11-04T12:24:33Z) - Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
本研究は乳房マンモグラフィー領域における癌分類におけるアノテーションシフトをシミュレートし,解析し,緩和する。
本研究では, 影響のあるクラスに対して, 単一画像生成モデルに基づくトレーニングデータ拡張手法を提案する。
本研究は、深層学習乳癌分類におけるアノテーションシフトに関する重要な知見を提供し、ドメインシフトの課題を克服するための単一画像生成モデルの可能性を探る。
論文 参考訳(メタデータ) (2024-05-30T07:02:50Z) - Multi-stages attention Breast cancer classification based on nonlinear
spiking neural P neurons with autapses [10.16176106140093]
ディープネットワークにおけるダウンサンプリングは、情報の損失につながる可能性がある。
本稿では,アプタプを用いたNSNPニューロンに基づく多段階アテンションアーキテクチャを提案する。
全ての倍率ケースにおいて96.32%の分類精度を達成し、最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-12-20T06:52:38Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - A Voting-Stacking Ensemble of Inception Networks for Cervical Cytology
Classification [10.61705267657852]
子宮頸癌は女性の健康を脅かす最も深刻な疾患の1つである。
本稿では,3つのインセプションネットワークをベースラーナーとして利用し,投票アンサンブルを通じてその出力を統合する投票-乗算アンサンブル戦略を提案する。
実験結果は、現在の最先端(SOTA)法よりも優れており、スクリーニングの負荷を減らし、病理学者が子宮頸がんを検出するのに役立つ可能性を示している。
論文 参考訳(メタデータ) (2023-08-05T03:21:12Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
子宮頸癌放射線治療におけるOAR(Organs at Risk)の自動セグメンテーションのためのディープラーニングモデルを学習するためのアプローチを提案する。
我々は、データの不均一性、ラベルノイズ、アノテーションの欠如を最小限に抑えるために、自動データのクリーニングにシンプルな手法を採用している。
そこで本研究では,教師が指導するシステム,アノテーション命令,不確実性誘導学習を利用して,アノテーションの欠如の有無を学習する半教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-02-21T13:24:40Z) - Transductive Linear Probing: A Novel Framework for Few-Shot Node
Classification [56.17097897754628]
自己教師付きグラフと対照的な事前学習による帰納的線形探索は、同じプロトコル下での最先端の完全教師付きメタラーニング手法より優れていることを示す。
この研究が、数ショットのノード分類問題に新たな光を当て、グラフ上のわずかにラベル付けされたインスタンスから学ぶことの今後の研究を促進することを願っている。
論文 参考訳(メタデータ) (2022-12-11T21:10:34Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。