Progressive Multi-Stage Learning for Discriminative Tracking
- URL: http://arxiv.org/abs/2004.00255v1
- Date: Wed, 1 Apr 2020 07:01:30 GMT
- Title: Progressive Multi-Stage Learning for Discriminative Tracking
- Authors: Weichao Li, Xi Li, Omar Elfarouk Bourahla, Fuxian Huang, Fei Wu, Wei
Liu, Zhiheng Wang, and Hongmin Liu
- Abstract summary: We propose a joint discriminative learning scheme with the progressive multi-stage optimization policy of sample selection for robust visual tracking.
The proposed scheme presents a novel time-weighted and detection-guided self-paced learning strategy for easy-to-hard sample selection.
Experiments on the benchmark datasets demonstrate the effectiveness of the proposed learning framework.
- Score: 25.94944743206374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual tracking is typically solved as a discriminative learning problem that
usually requires high-quality samples for online model adaptation. It is a
critical and challenging problem to evaluate the training samples collected
from previous predictions and employ sample selection by their quality to train
the model.
To tackle the above problem, we propose a joint discriminative learning
scheme with the progressive multi-stage optimization policy of sample selection
for robust visual tracking. The proposed scheme presents a novel time-weighted
and detection-guided self-paced learning strategy for easy-to-hard sample
selection, which is capable of tolerating relatively large intra-class
variations while maintaining inter-class separability. Such a self-paced
learning strategy is jointly optimized in conjunction with the discriminative
tracking process, resulting in robust tracking results. Experiments on the
benchmark datasets demonstrate the effectiveness of the proposed learning
framework.
Related papers
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
We propose a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss.
This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models.
arXiv Detail & Related papers (2023-08-21T07:58:15Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Adaptive Client Sampling in Federated Learning via Online Learning with
Bandit Feedback [36.05851452151107]
federated learning (FL) systems need to sample a subset of clients that are involved in each round of training.
Despite its importance, there is limited work on how to sample clients effectively.
We show how our sampling method can improve the convergence speed of optimization algorithms.
arXiv Detail & Related papers (2021-12-28T23:50:52Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
Convolutional neural networks (CNNs) have been successfully applied to the single target tracking task in recent years.
In this paper, we propose an active learning method for deep visual tracking, which selects and annotates the unlabeled samples to train the deep CNNs model.
Under the guidance of active learning, the tracker based on the trained deep CNNs model can achieve competitive tracking performance while reducing the labeling cost.
arXiv Detail & Related papers (2021-10-17T11:47:56Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z) - Message Passing Adaptive Resonance Theory for Online Active
Semi-supervised Learning [30.19936050747407]
We propose Message Passing Adaptive Resonance Theory (MPART) for online active semi-supervised learning.
MPART infers the class of unlabeled data and selects informative and representative samples through message passing between nodes on the topological graph.
We evaluate our model with comparable query selection strategies and frequencies, showing that MPART significantly outperforms the competitive models in online active learning environments.
arXiv Detail & Related papers (2020-12-02T14:14:42Z) - Adaptive Experience Selection for Policy Gradient [8.37609145576126]
Experience replay is a commonly used approach to improve sample efficiency.
gradient estimators using past trajectories typically have high variance.
Existing sampling strategies for experience replay like uniform sampling or prioritised experience replay do not explicitly try to control the variance of the gradient estimates.
We propose an online learning algorithm, adaptive experience selection (AES), to adaptively learn an experience sampling distribution that explicitly minimises this variance.
arXiv Detail & Related papers (2020-02-17T13:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.