Maximally Separated Active Learning
- URL: http://arxiv.org/abs/2411.17444v1
- Date: Tue, 26 Nov 2024 14:02:43 GMT
- Title: Maximally Separated Active Learning
- Authors: Tejaswi Kasarla, Abhishek Jha, Faye Tervoort, Rita Cucchiara, Pascal Mettes,
- Abstract summary: We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes.
We demonstrate strong performance over existing active learning techniques across five benchmark datasets.
- Score: 32.98415531556376
- License:
- Abstract: Active Learning aims to optimize performance while minimizing annotation costs by selecting the most informative samples from an unlabelled pool. Traditional uncertainty sampling often leads to sampling bias by choosing similar uncertain samples. We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes, ensuring consistent inter-class separation and robust feature representations. Our approach introduces Maximally Separated Active Learning (MSAL) for uncertainty sampling and a combined strategy (MSAL-D) for incorporating diversity. This method eliminates the need for costly clustering steps, while maintaining diversity through hyperspherical uniformity. We demonstrate strong performance over existing active learning techniques across five benchmark datasets, highlighting the method's effectiveness and integration ease. The code is available on GitHub.
Related papers
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.
We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.
Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
We propose a deep active learning framework for annotation-efficient polyp segmentation.
In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area.
We show that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
arXiv Detail & Related papers (2024-03-21T12:25:17Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Self-aware and Cross-sample Prototypical Learning for Semi-supervised
Medical Image Segmentation [10.18427897663732]
Consistency learning plays a crucial role in semi-supervised medical image segmentation.
It enables the effective utilization of limited annotated data while leveraging the abundance of unannotated data.
We propose a self-aware and cross-sample prototypical learning method ( SCP-Net) to enhance the diversity of prediction in consistency learning.
arXiv Detail & Related papers (2023-05-25T16:22:04Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Mitigating Sampling Bias and Improving Robustness in Active Learning [13.994967246046008]
We introduce supervised contrastive active learning by leveraging the contrastive loss for active learning under a supervised setting.
We propose an unbiased query strategy that selects informative data samples of diverse feature representations.
We empirically demonstrate our proposed methods reduce sampling bias, achieve state-of-the-art accuracy and model calibration in an active learning setup.
arXiv Detail & Related papers (2021-09-13T20:58:40Z) - Progressive Multi-Stage Learning for Discriminative Tracking [25.94944743206374]
We propose a joint discriminative learning scheme with the progressive multi-stage optimization policy of sample selection for robust visual tracking.
The proposed scheme presents a novel time-weighted and detection-guided self-paced learning strategy for easy-to-hard sample selection.
Experiments on the benchmark datasets demonstrate the effectiveness of the proposed learning framework.
arXiv Detail & Related papers (2020-04-01T07:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.