A Blockchain-based Decentralized Federated Learning Framework with
Committee Consensus
- URL: http://arxiv.org/abs/2004.00773v1
- Date: Thu, 2 Apr 2020 02:04:16 GMT
- Title: A Blockchain-based Decentralized Federated Learning Framework with
Committee Consensus
- Authors: Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng and Qiang
Yan
- Abstract summary: In mobile computing scenarios, federated learning protects users from exposing their private data, while cooperatively training the global model for a variety of real-world applications.
Security of federated learning is increasingly being questioned, due to the malicious clients or central servers' constant attack to the global model or user privacy data.
We propose a decentralized federated learning framework based on blockchain, i.e., a Committee consensus (BFLC) framework.
- Score: 20.787163387487816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has been widely studied and applied to various scenarios.
In mobile computing scenarios, federated learning protects users from exposing
their private data, while cooperatively training the global model for a variety
of real-world applications. However, the security of federated learning is
increasingly being questioned, due to the malicious clients or central servers'
constant attack to the global model or user privacy data. To address these
security issues, we proposed a decentralized federated learning framework based
on blockchain, i.e., a Blockchain-based Federated Learning framework with
Committee consensus (BFLC). The framework uses blockchain for the global model
storage and the local model update exchange. To enable the proposed BFLC, we
also devised an innovative committee consensus mechanism, which can effectively
reduce the amount of consensus computing and reduce malicious attacks. We then
discussed the scalability of BFLC, including theoretical security, storage
optimization, and incentives. Finally, we performed experiments using
real-world datasets to verify the effectiveness of the BFLC framework.
Related papers
- Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
We propose a Protected-based Federated Learning Model (PPBFL) to enhance the security of federated learning.
We introduce a Proof of Training Work (PoTW) algorithm tailored for federated learning, aiming to incentive training nodes.
We also propose a new mix transactions mechanism utilizing ring signature technology to better protect the identity privacy of local training clients.
arXiv Detail & Related papers (2024-01-02T13:13:28Z) - B^2SFL: A Bi-level Blockchained Architecture for Secure Federated
Learning-based Traffic Prediction [4.3030251749726345]
Federated Learning (FL) is a privacy-preserving machine learning technology.
Security and privacy guarantees could be compromised due to malicious participants and the centralized FL server.
This article proposed a bi-level blockchained architecture for secure federated learning-based traffic prediction.
arXiv Detail & Related papers (2023-10-23T08:06:05Z) - FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain [0.3480973072524161]
The core of the blockchain is the consensus protocol, which establishes consensus among all the participants.
We propose an efficient and secure consensus protocol based on proof of useful federated learning for blockchain (called FedChain)
Our approach has been tested and validated through extensive experiments, demonstrating its performance.
arXiv Detail & Related papers (2023-08-29T08:04:07Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.