FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain
- URL: http://arxiv.org/abs/2308.15095v1
- Date: Tue, 29 Aug 2023 08:04:07 GMT
- Title: FedChain: An Efficient and Secure Consensus Protocol based on Proof of Useful Federated Learning for Blockchain
- Authors: Peiran Wang,
- Abstract summary: The core of the blockchain is the consensus protocol, which establishes consensus among all the participants.
We propose an efficient and secure consensus protocol based on proof of useful federated learning for blockchain (called FedChain)
Our approach has been tested and validated through extensive experiments, demonstrating its performance.
- Score: 0.3480973072524161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain has become a popular decentralized paradigm for various applications in the zero-trust environment. The core of the blockchain is the consensus protocol, which establishes consensus among all the participants. PoW (Proof-of-Work) is one of the most popular consensus protocols. However, the PoW consensus protocol which incentives the participants to use their computing power to solve a meaningless hash puzzle is continuously questioned as energy-wasting. To address these issues, we propose an efficient and secure consensus protocol based on proof of useful federated learning for blockchain (called FedChain). We first propose a secure and robust blockchain architecture that takes federated learning tasks as proof of work. Then a pool aggregation mechanism is integrated to improve the efficiency of the FedChain architecture. To protect model parameter privacy for each participant within a mining pool, a secret sharing-based ring-all reduce architecture is designed. We also introduce a data distribution-based federated learning model optimization algorithm to improve the model performance of FedChain. At last, a zero-knowledge proof-based federated learning model verification is introduced to preserve the privacy of federated learning participants while proving the model performance of federated learning participants. Our approach has been tested and validated through extensive experiments, demonstrating its performance.
Related papers
- Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain [0.069060054915724]
Federated learning can solve the privacy protection problem in distributed data mining and machine learning.
This paper proposes a data ownership confirmation mechanism based on blockchain and smart contract.
arXiv Detail & Related papers (2024-09-13T02:02:18Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
We propose a Protected-based Federated Learning Model (PPBFL) to enhance the security of federated learning.
We introduce a Proof of Training Work (PoTW) algorithm tailored for federated learning, aiming to incentive training nodes.
We also propose a new mix transactions mechanism utilizing ring signature technology to better protect the identity privacy of local training clients.
arXiv Detail & Related papers (2024-01-02T13:13:28Z) - Robust softmax aggregation on blockchain based federated learning with convergence guarantee [11.955062839855334]
We propose a softmax aggregation blockchain based federated learning framework.
First, we propose a new blockchain based federated learning architecture that utilizes the well-tested proof-of-stake consensus mechanism.
Second, to ensure the robustness of the aggregation process, we design a novel softmax aggregation method.
arXiv Detail & Related papers (2023-11-13T02:25:52Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - A Blockchain-based Decentralized Federated Learning Framework with
Committee Consensus [20.787163387487816]
In mobile computing scenarios, federated learning protects users from exposing their private data, while cooperatively training the global model for a variety of real-world applications.
Security of federated learning is increasingly being questioned, due to the malicious clients or central servers' constant attack to the global model or user privacy data.
We propose a decentralized federated learning framework based on blockchain, i.e., a Committee consensus (BFLC) framework.
arXiv Detail & Related papers (2020-04-02T02:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.